QCD Challenges in pp, pA and AA collisions at high energies

Double Vector Meson Production in Photon - Induced Interactions at Hadronic Colliders

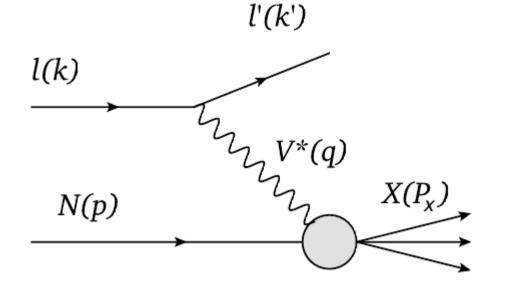
Bruno Duarte da Silva Moreira

V.P. Gonçalves, B.D. Moreira, F.S. Navarra - Eur.Phys.J. C 76 (2016).

ECT* - Trento, 27th February - 3rd March 2017

Outline

- Introduction
- Photon-induced processes
- Ultra-peripheral collisions
- Color dipole formalism
- Double vector meson production in double photonnucleus interactions
- Results
- Conclusions

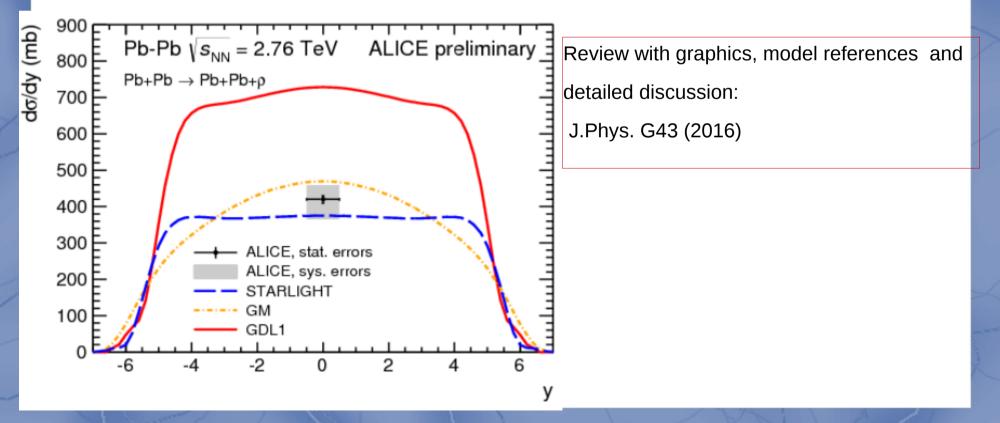

• The advent of high energy colliders has motivated:

- Search for new physics.
- Study and detection of new particles.
- Study of high energy particle physics.

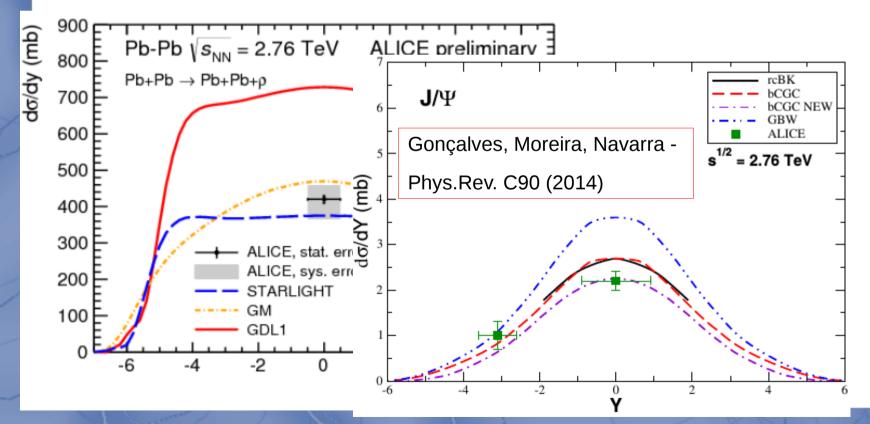
• The advent of high energy colliders has motivated:

- Search for new physics.
- Study and detection of new particles.
- Study of high energy particle physics.
 - Study of the high energy QCD dynamics.

• DIS - a suitable way to study the QCD dynamics and the hadron structure in photon-nucleon interactions.


DIS and DDIS were studied at HERA.

- In collisions at high energies and moderate virtualities, the hadron becomes a dense system filled, mainly, by gluons.
- If gluon density is very large, is expected that gluon recombination effects must be important. - saturation
- Some evidences of saturation at HERA, RHIC and LHC.
 - Although this, the saturation is still an open question.


- Future EIC study of photon-hadron interaction through DIS and DDIS in larger energies compared to the HERA.
- Alternative for the study of photon-hadron interactions LHC as a photon collider in ultra-peripheral hadronic collisions (UPCs) - exclusive vector meson photoproduction
 - First experimental studies RHIC for ρ production in AuAu collisions.
 - LHC larger energies compared with RHIC.

• What has been done about this subject?

- What has been done about this subject?
- LHC data about diffractive vector meson production in pp, pA and AA ultra-peripheral collisions.

- What has been done about this subject?
- LHC data about diffractive vector meson production in pp, pA and AA ultra-peripheral collisions.

- The data shows large cross sections for a single vector meson production in a single γ h scattering mechanism (SSM).
 - Non negligible probability for the double vector meson production due to the double γ h scattering mechanism (DSM).

Double Scattering Mechanism

- Spencer Klein and Joakim Nystrand Phys.Rev. C 60 (1999).
 - Formalism of DSM for total cross sections.
 - Total cross sections for vector meson production.
- Mariola Kłusek-Gawenda and Antoni Szczurek Phys.Rev. C89 (2014).
 - Detailed analysis for double ρ production.
 - Differential distributions.
 - Total cross sections.
 - Smearing of ρ mass.
- Both photon-nucleus interaction based on VDM.

Double Scattering Mechanism

- V.P. Goncalves, B.D. Moreira, F.S. Navarra Eur.Phys.J. C 76 (2016).
 - $\rho\rho$, J/ ψ J/ ψ and ρ J/ ψ production in pp, pA and AA UPCs.
 - Rapidity distributions.
 - Behavior of total cross section with CM collision energy.
 - Color dipole for the interaction photon-nucleus (saturation).

Single Scattering Mechanism for Exclusive Vector Meson Production

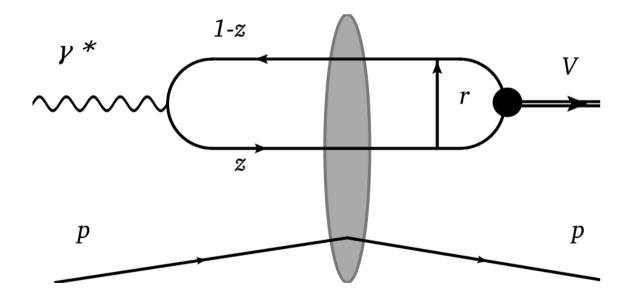
Ultra-Peripheral Collisions

- We are interested in hadronic collisions in which the impact parameter is larger than the sum of the two hadrons in the initial state (UPC).
- In UPCs at high energies, the nucleus acts as a source of almost real photons (small virtualities).
 - The cross section of the nucleus-nucleus collisions can be written in the factorized form.

 $\frac{d\sigma}{d^2bdy} = \omega_1 N_{A_1}(\omega_1, b) \,\sigma_{\gamma A_2 \to V A_2}(\omega_1) + (1 \Longleftrightarrow 2)$

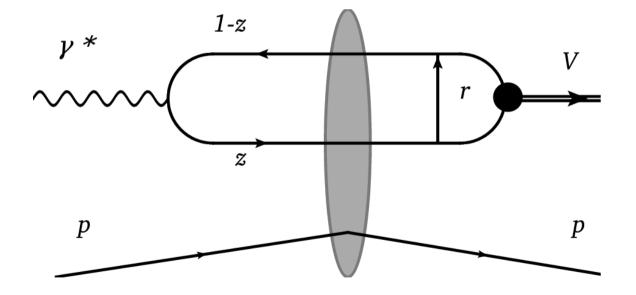
Ultra-Peripheral Collisions

For the production of a single vector meson (SSM), we have

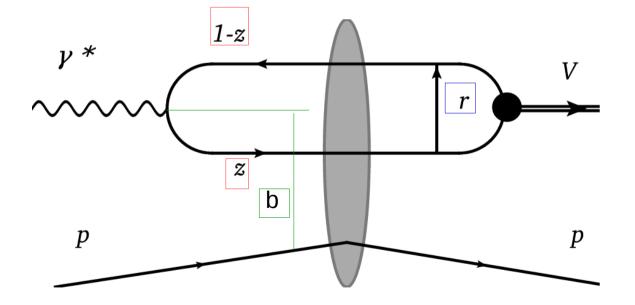

$$\frac{d\sigma}{d^2bdy} = \omega_1 N_{A_1}(\omega_1, b) \,\sigma_{\gamma A_2 \to V A_2}(\omega_1) + (1 \Longleftrightarrow 2)$$

$$N_A(\omega, b) = \frac{Z^2 \alpha_{EM}}{\pi^2} \omega K_1^2 \left(\frac{\omega b}{\gamma}\right)$$

$$\omega_{1,2} = \frac{M_V}{2} e^{\pm y}$$


$$\sigma_{\gamma A \to V A}$$
 ?

 Photon-hadron collision on a frame where most of the energy is carried by the hadron, while the photon only has enough energy to fluctuate in a color dipole.



For a coherent production of a vector meson

$$\sigma\left(\gamma A \to VA\right) = \int d^2 \mathbf{b} \left[\int d^2 \mathbf{r} \int dz \left(\Psi_V^* \Psi\right) \mathcal{N}_A(x, \mathbf{r}, \mathbf{b}) \right]^2$$

$$\sigma\left(\gamma A \to VA\right) = \int d^2 \mathbf{b} \left[\int d^2 \mathbf{r} \int dz \left(\Psi_V^* \Psi\right) \mathcal{N}_A(x, \mathbf{r}, \mathbf{b}) \right]^2$$

$$\sigma \left(\gamma A \to V A \right) = \int d^2 \mathbf{b} \left[\int d^2 \mathbf{r} \int dz \left(\Psi_V^* \Psi \right) \mathcal{N}_A(x, \mathbf{r}, \mathbf{b}) \right]^2$$
Overlap
Amplitude

 $\mathcal{N}_A(x, \mathbf{r}, \mathbf{b}_\mathbf{A}) = 1 - \exp\left[-\frac{1}{2}\sigma_{dip}(x, r^2)T_A(\mathbf{b}_\mathbf{A})\right]$

Armesto, N. - Eur. Phys. J. C26 (2002).

dipole - nucleon

dipole-nucleus

Model to σ_{dip}

• bCGC: Kowalski, Motyka and Watt – Phys. Rev. D 74 (2006)

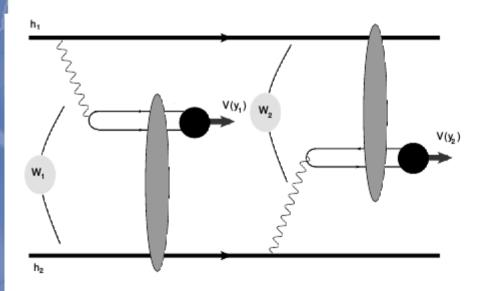
$$\mathcal{N}(x, \mathbf{r}, \mathbf{b}) = \begin{cases} \mathcal{N}_0 \left(\frac{rQ_s}{2}\right)^{2[\gamma_s + (1/(\kappa\lambda Y))\ln(2/(rQ_s))]}, rQ_s \leq 2\\ 1 - \exp\left[-A\ln^2(BrQ_s)\right] , rQ_s > 2 \end{cases}$$
$$\sigma_{dip} = 2 \int d^2 b \mathcal{N}(x, r, b)$$
$$Q_s(x, \mathbf{b}) = \left(\frac{x_0}{x}\right)^{\lambda/2} \left[\exp\left(-\frac{b^2}{2B_{CGC}}\right)\right]^{\frac{1}{2\gamma_s}}$$

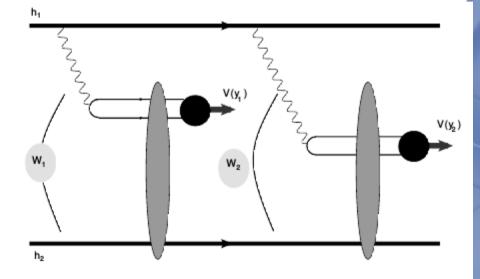
• Update of the parameters: Rezaeian e Schmidt – Phys. Rev. D 88 (2013)

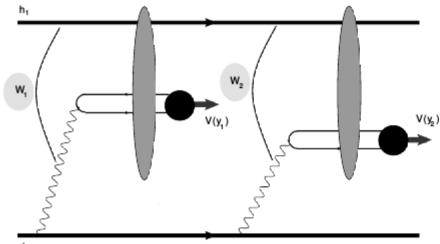
Model to ψ_{V}

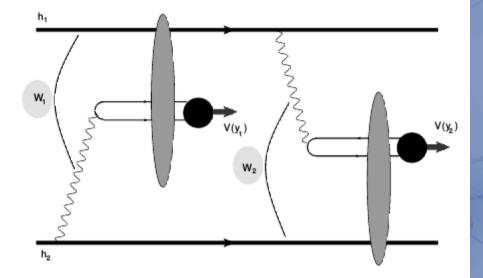
• The overlap between the wave functions of the photon and the vector meson is given by

$$(\Psi_V^*\Psi)_T = \hat{e}_f e \frac{N_c}{\pi} \left\{ m_f^2 K_0(\epsilon r) \phi_T(r, z) - \left[z^2 + (1-z)^2 \right] \times \epsilon K_1(\epsilon r) \partial_r \phi_T(r, z) \right\}$$


where


$$\varepsilon^2 = z(1-z)Q^2 + m_f^2$$
 e $\nabla_r^2 \equiv (1/r)\partial_r + \partial_r^2$


• Gaus – LC – Phys. Rev. D 74, 074016 (2006)


$$\phi_T(r,z) = N_T [z(1-z)]^2 \exp\left(-\frac{r^2}{2R_T^2}\right)$$

Double Scattering Mechanism

h₂

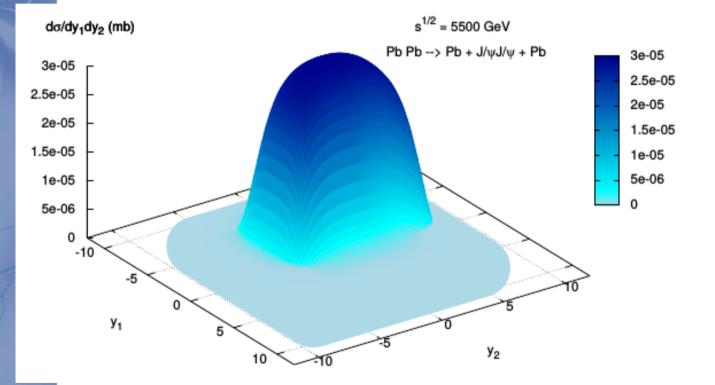
$$\frac{d\sigma_{A_1A_2 \to A_1V_1V_2A_2}}{dy_1dy_2} = C \int_{b_{min}} \frac{d\sigma_{A_1A_2 \to A_1V_1A_2}}{d^2bdy_1} \times \frac{d\sigma_{A_1A_2 \to A_1V_2A_2}}{d^2bdy_2} d^2b$$

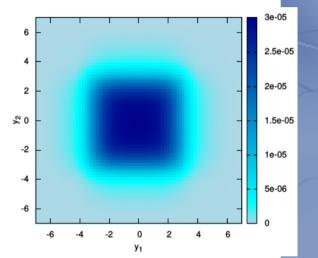
$$b_{min} = R_1 + R_2$$

$$\begin{split} \frac{d\sigma_{A_1A_2 \to A_1V_1V_2A_2}}{dy_1dy_2} &= C \int_{b_{min}} \frac{d\sigma_{A_1A_2 \to A_1V_1A_2}}{d^2bdy_1} \times \frac{d\sigma_{A_1A_2 \to A_1V_2A_2}}{d^2bdy_2} d^2b \\ b_{min} &= R_1 + R_2 \\ \hline \\ \frac{d\sigma}{d^2bdy} &= \omega_1 N_{A_1}(\omega_1, b) \, \sigma_{\gamma A_2 \to VA_2}(\omega_1) + (1 \Longleftrightarrow 2) \end{split}$$

$$\frac{d\sigma_{A_1A_2 \to A_1V_1V_2A_2}}{dy_1dy_2} = C \int_{b_{min}} \frac{d\sigma_{A_1A_2 \to A_1V_1A_2}}{d^2bdy_1} \times \frac{d\sigma_{A_1A_2 \to A_1V_2A_2}}{d^2bdy_2} d^2b$$

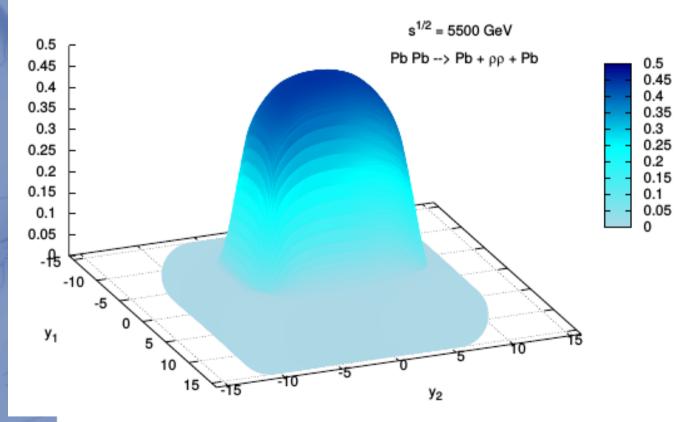
$$b_{min} = R_1 + R_2$$

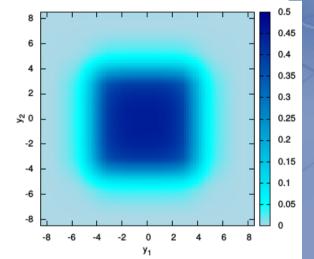

$$b_{min} = V_1 + R_2$$

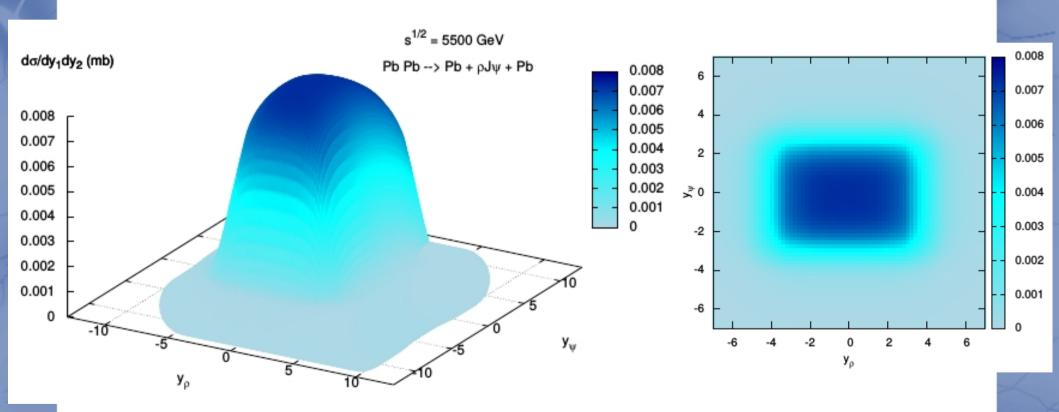

$$\frac{d\sigma_{A_1A_2 \to A_1V_1V_2A_2}}{dy_1dy_2} = C \int_{b_{min}} \frac{d\sigma_{A_1A_2 \to A_1V_1A_2}}{d^2bdy_1} \times \frac{d\sigma_{A_1A_2 \to A_1V_2A_2}}{d^2bdy_2} d^2b$$

$$\frac{1}{2}, \text{ if } V_1 = V_2$$

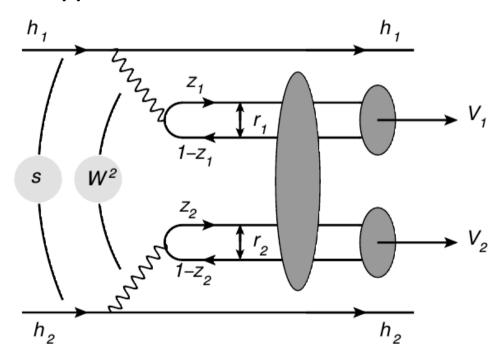
$$1, \text{ if } V_1 \neq V_2$$
Only UPCs !

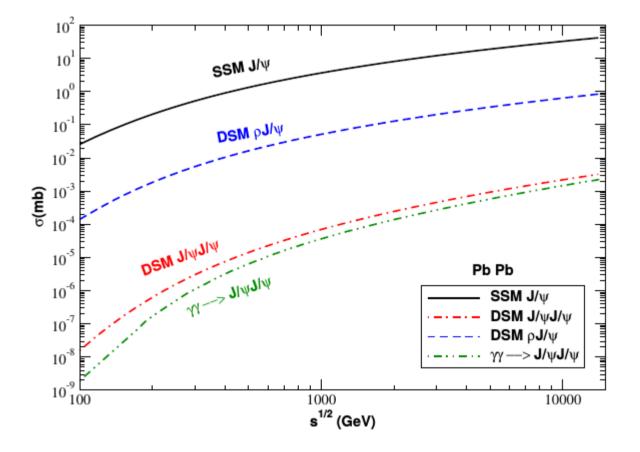

Results

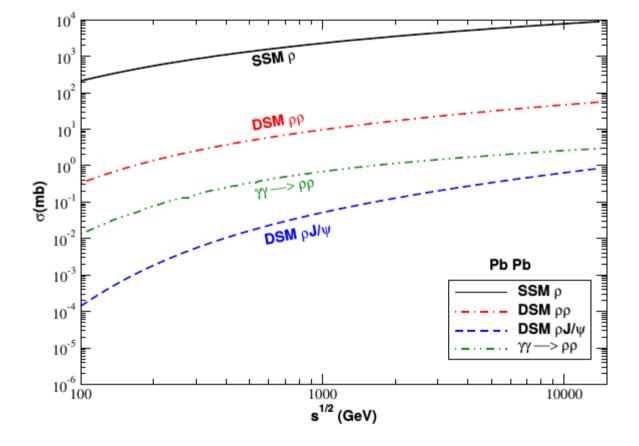


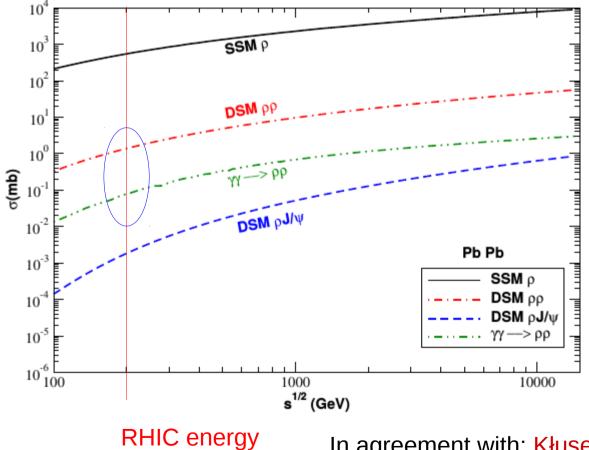

Results

dơ/dy₁dy₂ (mb)




Results




 Comparison: Double vector meson production in UPC due to γγ interactions.

Gonçalves, V.P., Moreira, B.D. and Navarra, F.S. – Eur.Phys.J. C 76 (2016).

In agreement with: Kłusek-Gawenda and Szczurek - Phys.Rev. C89 (2014).

LHC energies

Final state	PbPb	PbPb
	$\sqrt{s} = 2.76 \mathrm{TeV}$	$\sqrt{s} = 5.5 \mathrm{TeV}$
$J/\Psi J/\Psi$	$402.301~\rm{nb}$	1054.951 nb
$\rho \rho$	$21.150~\mathrm{mb}$	$29.421~\mathrm{mb}$
$ ho J/\Psi$	$0.18 \mathrm{~mb}$	$0.35 \mathrm{~mb}$

Double vector meson production

LHC energies

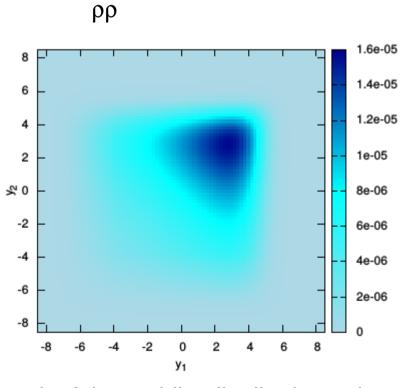
Final state	PbPb	PbPb	
	$\sqrt{s} = 2.76 \mathrm{TeV}$	$\sqrt{s} = 5.5 \mathrm{TeV}$	
$J/\Psi J/\Psi$	402.301 nb	1054.951 nb	
$\rho \rho$	$21.150~\mathrm{mb}$	$29.421~\mathrm{mb}$	
$ ho J/\Psi$	$0.18 \mathrm{~mb}$	$0.35 \mathrm{~mb}$	

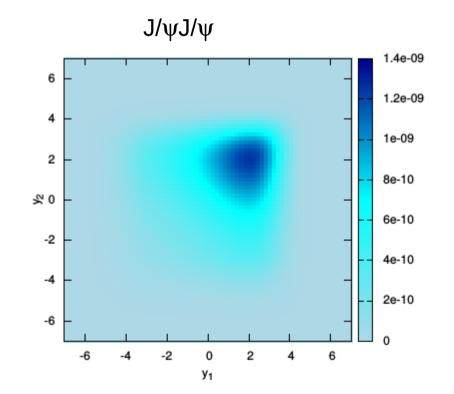
SSM:

J/ψ	11.0 mb	20.3 mb
ρ	4.43 b	6.2 b

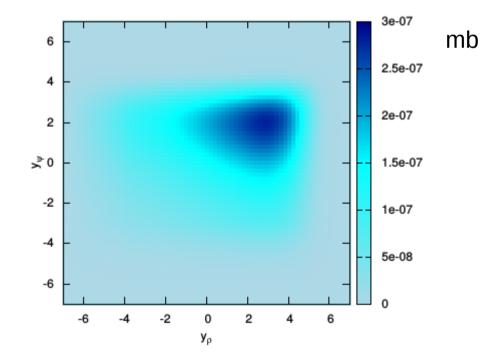
Double vector meson production

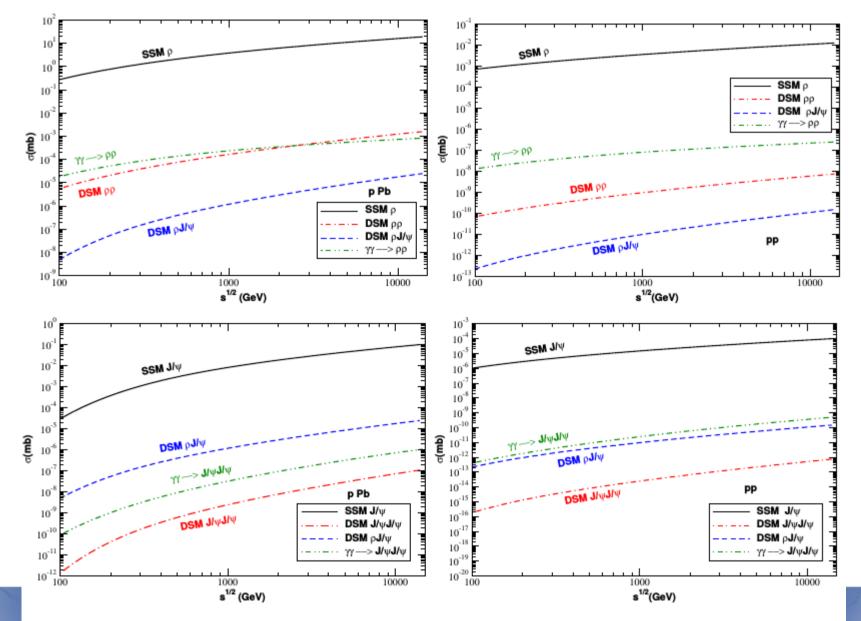
Final state		LHCb	ATLAS/CMS	ALICE
		$2 < y_{1,2} < 4.5$	$-2 < y_{1,2} < 2$	$-1 < y_{1,2} < 1$
$J/\Psi J/\Psi$	$PbPb \ (\sqrt{s} = 2.76 \mathrm{TeV})$	5.51 nb	234.94 nb	69.91 nb
	$PbPb \ (\sqrt{s} = 5.5 \mathrm{TeV})$	30.85 nb	$446.11~\rm{nb}$	118.03 nb
ρρ	$PbPb \ (\sqrt{s} = 2.76 \mathrm{TeV})$	$0.93 \mathrm{~mb}$	$6.08 \mathrm{~mb}$	1.58 mb
	$PbPb \ (\sqrt{s} = 5.5 \mathrm{TeV})$	1.50 mb	$7.06 \mathrm{~mb}$	$1.79 \mathrm{~mb}$
$\rho J/\Psi$	$PbPb \ (\sqrt{s} = 2.76 \mathrm{TeV})$	$4.48 \ \mu b$	$75.17 \ \mu b$	$20.94 \ \mu b$
	$PbPb \ (\sqrt{s} = 5.5 \mathrm{TeV})$	$13.42 \ \mu \mathrm{b}$	$112.00~\mu{\rm b}$	$29.06 \ \mu \mathrm{b}$


Conclusions

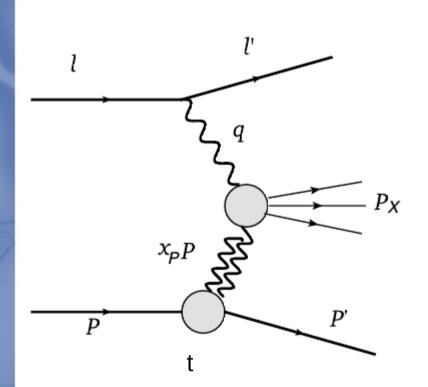

- We have estimated the double production of vector mesons in photon-nucleus interactions.
- This kind of process can be used to increase our knowledge about the diffractive photoproduction of vector mesons and the QCD dynamics at high energies.
- Our results show that the double production of vector mesons are relevant at kinematic range of LHC.
 - Experimental study is feasible.
- The experimental study of this process can be important to fix the QCD dynamics and the DSM.

Thank You!


• $pPb \rightarrow p + VV + Pb$ (5 TeV)

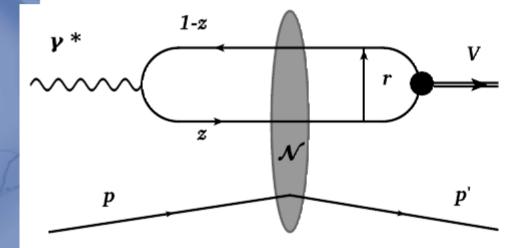

Unit of the rapidity distribution: mb

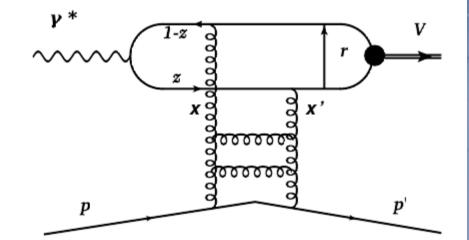
pPb → p + VV + Pb (5 TeV) – mixed final states.

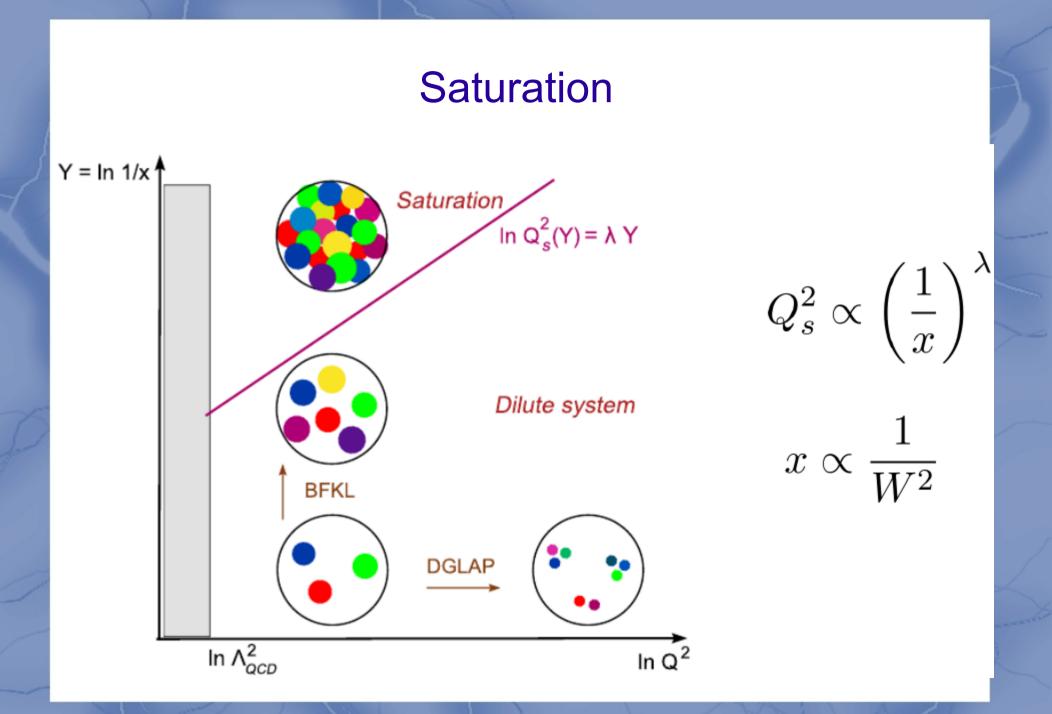


Final state	Mechanism	$\frac{PbPb}{\sqrt{s} = 2.76 \mathrm{TeV}}$	$\frac{PbPb}{\sqrt{s} = 5.5 \mathrm{TeV}}$	$\frac{pPb}{\sqrt{s} = 5 \text{TeV}}$	$pp \sqrt{s} = 7 \mathrm{TeV}$	$pp \sqrt{s} = 14 \mathrm{TeV}$
$J/\Psi J/\Psi$	$\begin{array}{c} \mathrm{DSM} \ \gamma\gamma \end{array}$	402.301 nb 235.565 nb	1054.951 nb 658.589 nb	28.473 pb 310.194 pb	$3.223 \times 10^{-4} \text{ pb}$ 0.2412 pb	$7.256 \times 10^{-4} \text{ pb}$ 0.4793 pb
ρρ	$\begin{array}{c} \mathrm{DSM} \ \gamma\gamma \end{array}$	21.150 mb 1.389 mb	29.421 mb 1.973 mb	702.595 nb 536.432 nb	4.354 pb 182.442 pb	7.083 pb 237.006 pb
$ ho J/\Psi$	DSM	0.18 mb	$0.35 \mathrm{~mb}$	8.929 nb	$7.469 \times 10^{-2} \text{ pb}$	$14.288 \times 10^{-2} \text{ pb}$

Final state		LHCb	ATLAS/CMS	ALICE1
		$2 < y_{1,2} < 4.5$	$-2 < y_{1,2} < 2$	$-1 < y_{1,2} < 1$
$J/\Psi J/\Psi$	$PbPb \ (\sqrt{s} = 2.76 \mathrm{TeV})$	5.51 nb	234.94 nb	$69.91 { m ~nb}$
	$PbPb \ (\sqrt{s} = 5.5 \mathrm{TeV})$	30.85 nb	446.11 nb	118.03 nb
	$pPb \ (\sqrt{s} = 5 \text{ TeV})$	3.25 pb	$8.87 \ \mathrm{pb}$	2.16 pb
ρρ	$PbPb \ (\sqrt{s} = 2.76 \mathrm{TeV})$	$0.93 \mathrm{~mb}$	$6.08 \mathrm{~mb}$	1.58 mb
	$PbPb \ (\sqrt{s} = 5.5 \mathrm{TeV})$	1.50 mb	$7.06 { m ~mb}$	$1.79 \mathrm{~mb}$
	$pPb \ (\sqrt{s} = 5 \text{ TeV})$	$84.09~\mathrm{nb}$	122.03 nb	30.11 nb
$ ho J/\Psi$	$PbPb \ (\sqrt{s} = 2.76 \mathrm{TeV})$	$4.48 \ \mu \mathrm{b}$	$75.17~\mu{ m b}$	$20.94~\mu{\rm b}$
	$PbPb \ (\sqrt{s} = 5.5 \mathrm{TeV})$	$13.42 \ \mu \mathrm{b}$	$112.00~\mu{\rm b}$	$29.06 \ \mu \mathrm{b}$
	$pPb \ (\sqrt{s} = 5 \text{ TeV})$	$1.02 \ {\rm nb}$	$2.08 \ { m nb}$	$0.51 \mathrm{~nb}$

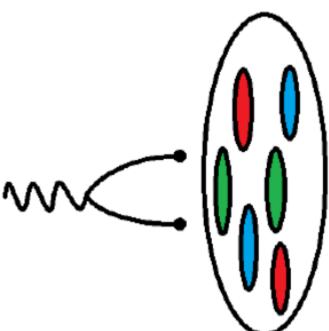

Dipole and DDIS

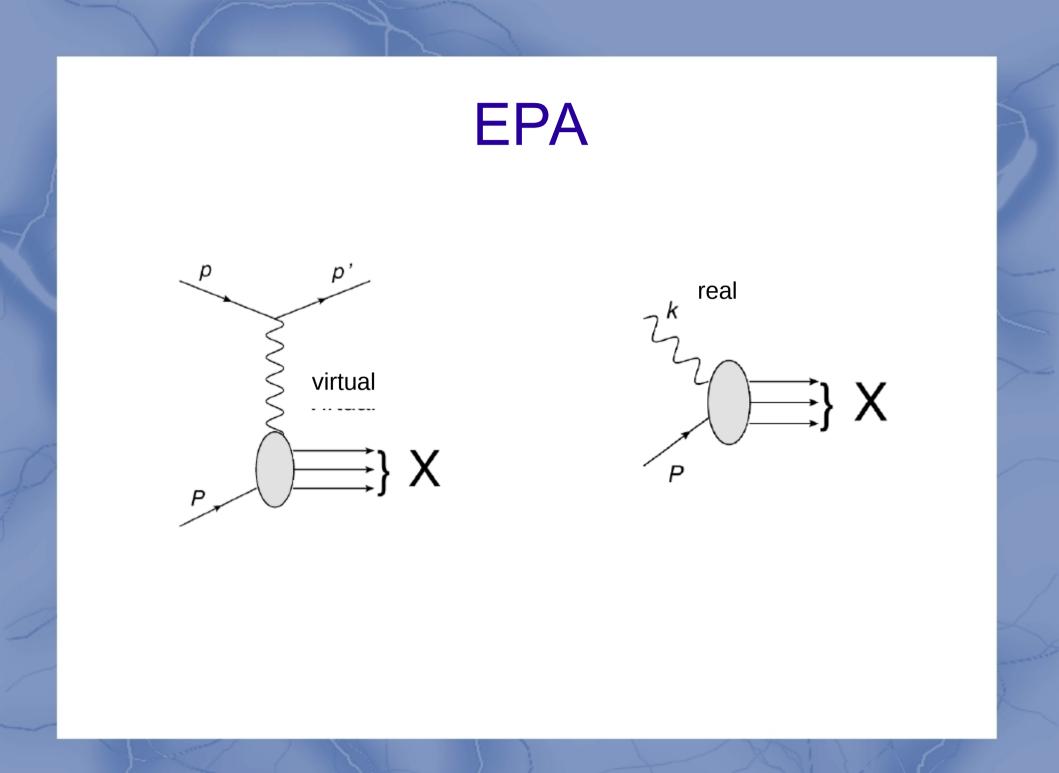


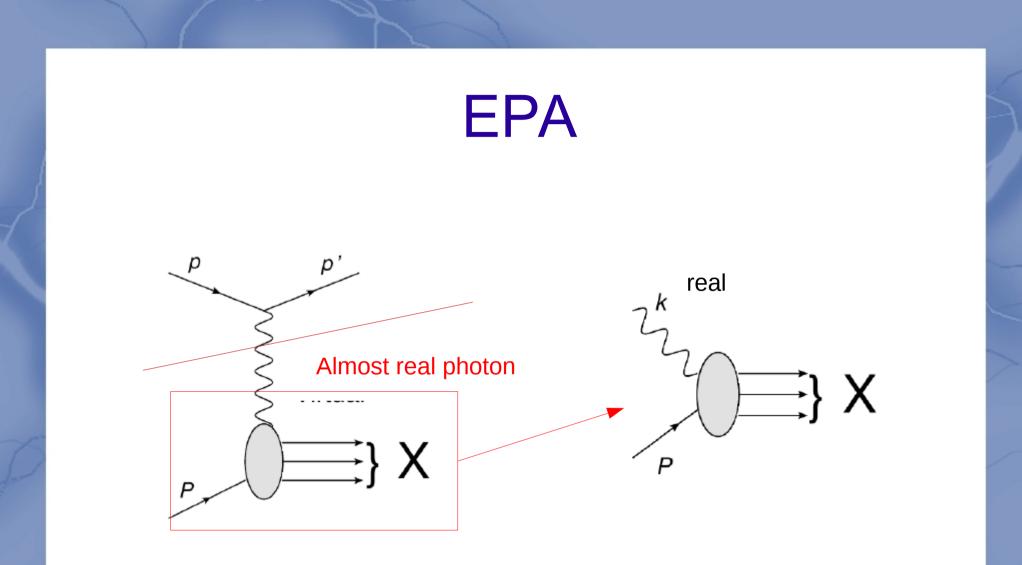

 $x_P = \frac{Q^2 + M_V^2}{W^2 + Q^2}$

 $t = -(P' - P)^2$

Dipole and DDIS






Saturation

 The dipole can "see" partons with size to the order of its transverse separation.

- Non linear regime r > 1/Qs
- Linear regime r < 1/Qs

Almost real photons = small virtualities

- 1 high energies
- 2 large impact parameters (> R1 + R2)