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Jet-gap-jet dissucussion

The jet-gap-jet process is an example of the diffractive jet production,
in which the pomeron is exchanged between the produced jets.

gap y

jet jet

One can understand jet-gap-jet
event as an event where particle
production in the rapidity region
between the jets is suppressed.
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Feynman diagrams
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Measurments of the
jet-gap-jet process where
done by collaborations:
D∅,CDF (disscussed in
O. Kepka, C. Marquet, and

C. Royon,Phys. Rev. D 83,

034036 )
and CMS (Dijet production
with a large rapidity between

jets,CMS-PAS-FSQ-12-001)
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Feynman diagrams

Mechanism of destroying rapidity gap, here this will be Multi
Parton Interactions (MPI)
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Particle production in jet events

We selected the following
example

0 y

jet2 jet1

−3 +3

with fixed position of jets and
fixed pT = 50GeV

The difference between
nondiffractive and jet-gap-jet
event originates from a different
flow of the colour charges in the
events, which affects the hadron
formation process.
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Particle production in jet events

Hadronisation process was obtained
with Pythia 8.
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The density of
produced particles
is reduced by two
orders of
magnitude, when
no colour is
transfered between
the jets.
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We define gap between the jets as follows:

η η

jet1 jet2

ηjet1 ηjet2

η1 η2

gap

Fixed configuration:

η = 0

ηjet1 = −3

ηjet2 = +3
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Particle production in jet events

η∆size of rapidity gap, 
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Rapidity gap distributions for the selected kinematical
configuration.
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Multi parton interactions

The MPIs are modeled in Pythia with the help of minijets
calculated in collinear factorization approach with a special
treatment at low transverse momenta by multiplying standard
cross section by a suppression factor.

Fsup(pt) =
p4

t

(p2
t0 + p2
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Multi parton interactions in jet-gap-jet events
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additional particles are
produced in the region
where gap was expected

the blue curve contains
MPI effects but only for
events without additional
interactions

gap greater than 5 - no
additional interactions
occured 11 / 25
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Kinematics depedence of gap
survival probability, defined as a
fraction of events in which any
additional parton-parton
interactions occured.

SG = result with MPI,nMPI =0
result without MPI’s
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Survival probality of gap
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Survival probality of gap
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A sudden effect appears at the
borders of ygg where less energy
is avaible for MPI’s.
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More realistic situations - integration over phase space (Monte Carlo simu-

lations).

We impose only cuts on transverse momentum 200GeV > pT > 40GeV .

For illustration process dynamics we take LL BFKL amplitude as disscussed

in O. Kepka, C. Marquet, and C. Royon,Phys. Rev. D 83, 034036

A(∆η, p2
T ) =

16NCπα
2
s

CFp
2
T

∞∑
p=−∞

∫
dγ

2iπ

[p2 − (γ − 1/2)2]exp(αχeff [2p, γ, α]∆η)

[(γ − 1/2)2 − (p − 1/2)2][(γ − 1/2)2 − (p + 1/2)2]
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BFKL amplitude for gg→gg with color singlet exchange

A(∆η, p2
T ) =

16NCπα
2
s

CFp2
T

∞∑
p=−∞

∫
dγ

2iπ

[p2 − (γ − 1/2)2]exp(αχeff [2p, γ, α]∆η)

[(γ − 1/2)2 − (p − 1/2)2][(γ − 1/2)2 − (p + 1/2)2]

with the normalization: dσ
dt

=
|Agg→gg |2

16π

χeff = 2ψ(1)− ψ
(

1− γ +
|p|
2

)
− ψ

(
γ +
|p|
2

)
ψ(γ) = d log Γ(γ)/dγ is derivative of Gamma function

αs in leading-logarithmic calculations is taken as a constant value

p is called conformal spin
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BFKL amplitude for gg→gg with color singlet exchange
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The gap between jets

We find gaps between jets as follows: η =
ηjet1

+ηjet2
2
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Ratio MPI/noMPI
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Color singlet two-gluon exchange

The two-gluon exchange
is disscussed for
egxample in: The
Pomeron in QCD,
V. Barone E. Predazzi

We need also:

with extra color factor: ( 81
16 )2

21 / 25



Introduction
Particle production in jet events

Multi parton interactions in jet events production
Process dynamics and MPI modeling

Conclusions

Color singlet two-gluon exchange

Two-gluon exchange amplitude:
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Jet-gap-jet vs two-gluon color singlet exchange
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MPI effects destroy large
rapidity gaps and cause
increasing number of events
with small rapidity gaps.

In the the two-gluon
exchange aproximation one
can observe a similar effect
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Conclusions

Detailed studies of the role of multi parton interactions in
jet-gap-jet process have been performed.

Fixed kinematical configurations have been studied.

To describe dynamics of jet-gap-jet process LL BFKL
framework has been used.

The two-gluon simple approximation has been performed for
comaprison.

The subprocess amplitudes for the color singlet exchange have
been implemented in PYTHIA 8.

The MPI effects lead to depedence on kinematical variables of the
gap survival factor, in contrast what is ussally assumed in the
literature.
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