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* Classification

* Single-objective regression
* Multi-objective regression
* Applications
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Classification

Train learning models to assign objects
into discrete classes

* Cats, Dogs, Jets, Higg Bosons
With a machine learning algorithm

* Decision tree, random forest, neural
network etc.

Sergei V. Gleyzer ALICE Mini-Workshop in HEP Statistics



Classification

That minimizes some type of Loss
function L

* In classification, you want to

achieve maximum separation
among classes
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Classification Theory

A Signal density
p(x, s) = p(x|s) p(s)

> Background density
% = | plx,b)=p(x|b)p(b)
@ Q,

Optimality criterion: minimize the error rate, o+ [3
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° ° ° CMS
UF Function Estimation

FLORIDA

* (G1ven enough data, estimate a function?

* Problem posed by Gauss (1805): estimate
comet’s trajectory from observations

* Solution: minimize difference between
measurements and predictions by varying model
parameters
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UF Regression

* Inputs:

— Training examples {<x®, yW>} of
unknown function f. x®,y®

* Output:

— hypothesis that best approximates target
function f
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UF Regression
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Modify evaluation criterion in the
induction algorithm

— from maximum separation gain

— to minimal variance
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Single-Objective Regression

Train learning model to estimate a single
function target or “objective”

* EX. photon energy/muon momentum
With a machine learning algorithm

* Decision tree, random forest, neural
network etc.
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UF Photon Energy =
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Single Target Example:

Inputs: EM shower information, photon coordinates,
median event energy

% i
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Multi-Objective Regression

* Problem requires simultaneous estimate of
multiple functions or “targets”
— May be additionally correlated

* N single-target models are not as optimal for this
problem (lingo: “multi-task™ learning)

* And more cumbersome.

* Train single model to simultaneously
predict all targets
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Applicable Models

e Methods:

Regression decision trees
Decision rules

Decision rule ensembles

Random forest

— Neural networks...

 Trade-offs:

— accuracy, model size, interpretability
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UF Multi-objective Example
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In HEP, this can be a transformation between two
different classes of objects or learning to predict
multiple parameters simultaneously

X input variables {a, b, c,d...}
— K of them strongly correlated

Y target outputs to estimate {A, B, C,D...}
— N of them strongly correlated

Challenge: build a predictive model to describe
simultaneously all the outputs {A,B,C,D...}, provided
a corresponding set of inputs.
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UF Target Correlations

Target Correlations

Very close to Zero
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* Multi-objective regression 1s a powerful tool

— when you have multiple target functions to
estimate simultaneously

— better than N single-objective regressions
especially when correlations need to be preserved
* Applications in HEP for learning multi-
dimensional transformations or multi-
parameter targets (for example 1n fast non-
parametric stmulation)
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