

Multi-Objective Regression for HEP

Sergei V. Gleyzer

University of Florida

IML WG Meeting Jan 18, 2016

Outline

- Classification
- Single-objective regression
- Multi-objective regression
- Applications

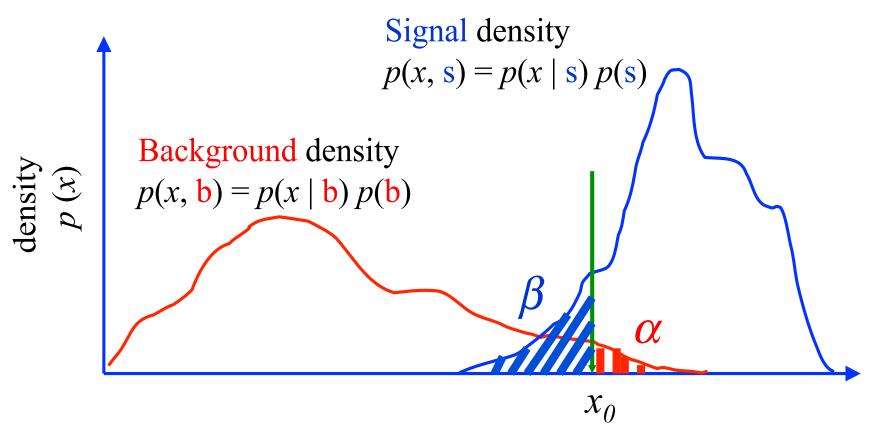
Classification

Classification

Train learning models to assign objects into discrete classes

Cats, Dogs, Jets, Higg Bosons

With a machine learning algorithm


• Decision tree, random forest, neural network etc.

Classification

That minimizes some type of Loss function L

• In classification, you want to achieve maximum separation among classes

Classification Theory

Optimality criterion: minimize the error rate, $\alpha + \beta$

Function Estimation

Function Estimation

• Given enough data, estimate a function?

- Problem posed by Gauss (1805): estimate comet's trajectory from observations
- Solution: minimize difference between measurements and predictions by varying model parameters

Regression

• Inputs:

- Training examples $\{\langle x^{(i)}, y^{(i)} \rangle\}$ of unknown function f. $x^{(i)}, y^{(i)}$

• Output:

hypothesis that best approximates target function f

Regression

Modify evaluation criterion in the induction algorithm

- from maximum separation gain
- to minimal variance

Single-Target Estimation

Single-Objective Regression

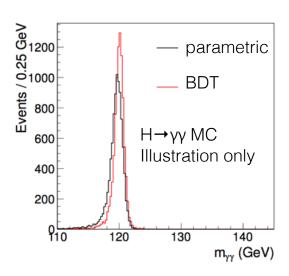
Train learning model to estimate a single function target or "objective"

• Ex. photon energy/muon momentum

With a machine learning algorithm

• Decision tree, random forest, neural network etc.

Photon Energy



Single Target Example:

Inputs: EM shower information, photon coordinates,

median event energy

Target Output: $E_{MEASURED}/E_{TRUE}$ ~10-30% improvement in resolution

Multi-Objective Regression

Multi-Objective Regression

- Problem requires simultaneous estimate of multiple functions or "targets"
 - May be additionally correlated
 - N single-target models are not as optimal for this problem (lingo: "multi-task" learning)
 - And more cumbersome.
- Train single model to simultaneously predict all targets

Applicable Models

• Methods:

- Regression decision trees
- Decision rules
- Decision rule ensembles
- Random forest
- Neural networks...

• Trade-offs:

- accuracy, model size, interpretability

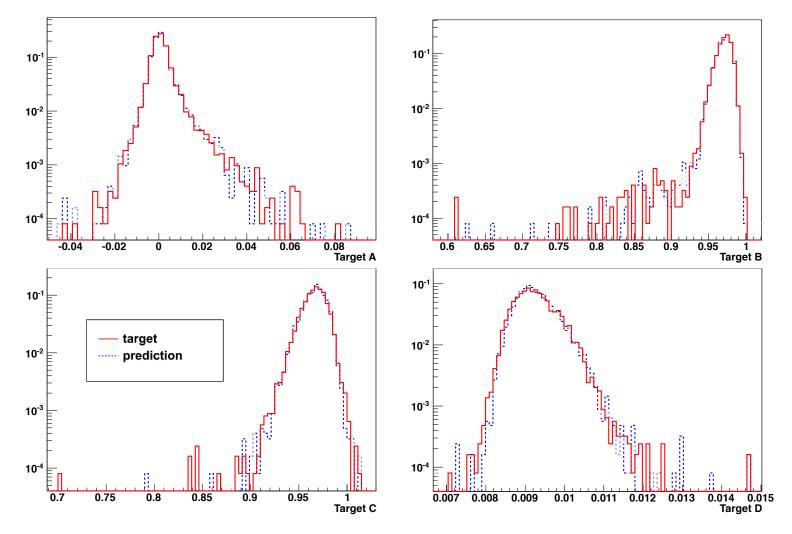
Applications

In HEP, this can be a transformation between two different classes of objects or learning to predict multiple parameters simultaneously

X input variables {a, b, c, d...}

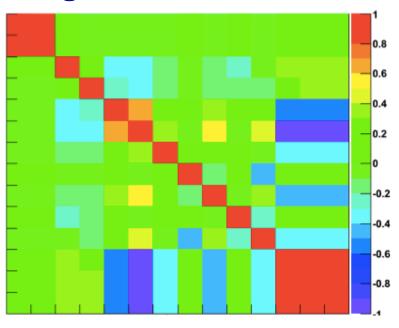
K of them strongly correlated

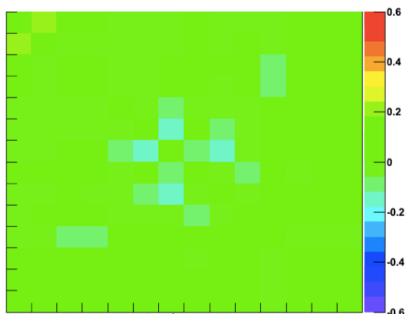
Y target outputs to estimate {A, B, C, D...}


N of them strongly correlated

Challenge: build a predictive model to describe simultaneously all the outputs {A,B,C,D...}, provided a corresponding set of inputs.

Illustrative Example




Target Correlations

Target Correlations

Prediction-Target Difference

Very close to Zero

Summary

- Multi-objective regression is a powerful tool
 - when you have multiple target functions to estimate simultaneously
 - better than N single-objective regressions
 especially when correlations need to be preserved
- Applications in HEP for learning multidimensional transformations or multiparameter targets (for example in fast nonparametric simulation)