Top Quark Mass: Fitting, Threshold and Reconstruction

André H. Hoang

Max-Planck-Institute for Physics Munich

Outline

- Quark masses in QCD
- Why we want m_t to very high precision
- Top Threshold Scan at ILC
- Fitting Methods at Tevatron
- Reconstruction at LHC and ILC
- Conclusions

- Important QCD input parameters for SM predictions
- Confinement → quark masses not physical observables

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} G_{\mu\nu}^2 + \sum_i \bar{\psi}_i \left(D - M_i \right) \psi$$

- defined as formal parameters in QCD action
- (renormalization) scheme dependent
- ▷ to be well defined: $m_q^{\text{schemeA}} = m_q^{\text{schemeB}}(1 + \alpha_s + \alpha_s^2 + ...)$
- some schemes more appropriate than others

- Important QCD input parameters for SM predictions
- Confinement → quark masses not physical observables

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} G_{\mu\nu}^2 + \sum_i \bar{\psi}_i \left(D - M_i \right) \psi$$

defined as formal parameters in QCD action

pole scheme:

- ▷ correlations to input parameters, order of p.th.
- ▷ degrades convergence of p.th. ("O(Λ_{QCD}) renormalon")
 due to linear sensitivity to IR momenta
- ⇒ Not used any more today when high precision required

- Important QCD input parameters for SM predictions
- Confinement → quark masses not physical observables

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} G_{\mu\nu}^2 + \sum_i \bar{\psi}_i \left(D - M_i \right) \psi$$

defined as formal parameters in QCD action

MS scheme:

- short-distance mass
- ▷ "running" parameter, $\overline{m}_q(\mu)$
- ▷ for processes where quark is very energetic ($E \gg m_q$) or far off-shell ($q^2 \neq m_q^2$)
- ▷ standard mass for comparison: $\overline{m}_q(\overline{m}_q)$

- Important QCD input parameters for SM predictions
- Confinement → quark masses not physical observables

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} G_{\mu\nu}^2 + \sum_i \bar{\psi}_i \left(D - M_i \right) \psi$$

defined as formal parameters in QCD action

threshold schemes:

- short-distance mass
- ▷ processes where quark is close to mass-shell ($q^2 \sim m_a^2$)
 - non-relativistic sum rules
 - B physics
 - heavy quarkonia
 - top-antitop threshold

kinetic mass PS mass 1S mass

Need for a precise Top mass

Electroweak precision observables

Need for a precise Top mass

Mass of Lightest MSSM Higgs Boson

Need for a precise Top mass

Dark Matter Constraints in MSSM_{mSUGRA}

Top Threshold Scan

$$m_t \gg p \sim m_t v \gg E \sim m_t v^2 \sim \Gamma_t > \Lambda_{\rm QCD}$$

- Effective Theory: NRQCD
 - Two correlated renormalization scales $E_{\text{kin}} \sim \frac{p^2}{m_t} \Rightarrow \mu_{\text{usoft}} = \frac{\mu_{\text{soft}}^2}{m_t}$
 - Theory unstable top quark
 - Γ_t cuts off nonperturvative effects

vNRQCD

Luke, Manohar, Rothstein; Stewart, Hoang

vNRQCD

Threshold Cross Section

NNLL Cross Section

Ringberg Workshop on QCD of Jets, January 8-10 2007

André H. Hoang - 13

Fitting Methods at Tevatron

Template Method (CDF II)

 <u>Principle</u>: perform kinematic fit and reconstruct top mass event by event. E.g. in lepton+jets channel:

Usually pick solution with lowest χ^2 .

Dynamics Method (D0 II)

 <u>Principle</u>: compute event-by-event probability as a function of m_t making use of all reconstructed objects in the events (integrate over unknowns). Maximize sensitivity by:

André H. Hoang - 14

Ringberg Workshop on QCD of Jets, January 8-10 2007

Lepton+jets (\geq 1 b-tag); Signal-only templates 2-tag 1-tag(T) Events/5 GeV/c² 009 000 000 000 All Events All Events RMS = 27 GeV/o² RMS = 32 GeV/o Corr. Comb (47%) Corr. Comb (28%) $RMS = 13 \text{ GeV/c}^2$ RMS = 13 GeV/c 150 200 250 300 350 150 200 250 300 350 100 m^{reco}(GeV/c²) m^{reco}(GeV/c²) 1-tag(L) 0-tag 900 700 800 700 600 500 400 300 200 100 All Events All Events Events/5 GeV/c² Events/5 GeV/c² 600 RMS = 31 GeV/o² $RMS = 37 \text{ GeV/o}^2$ 500 Corr. Comb (18%) Corr. Comb (20%) 400 $RMS = 13 \text{ GeV/c}^2$ RMS = 12 GeV/c² 300 200 100 150 200 250 300 350 150 200 250 300 350 100 m^{reco}(GeV/c²) m^{reco}(GeV/c²) Lepton+jets (370 pb⁻¹) D0 Run II Preliminary D0 Run II Preliminary L(JES)/L_{max} $L(m_{top})/L_{max}$ m_{top} = 170.6^{+4.0}_{-4.7} GeV JES = 1.027+0.033 combined sample

Fitting Methods at Tevatron

Experimental Issues

- Jet Energy scale
- underlying events
- b-tagging
- detector effects

What mass is measured?

- Top mass used in the MC ?
- Stable under higher order corrections ?
- A problem hard to address

Problem becomes relevant now !

Reconstruction at LHC and ILC

- Invariant Mass Reconstruction
 - suffi cient events for reconstruction (lepton+jets)
 - $\sigma_{\rm tot}(LHC) = 850 pb \rightarrow 10^8 \ t\bar{t}$ pairs
 - $\sigma_{\rm tot}({\rm ILC}) = 1pb \rightarrow 10^5 \ t\bar{t}$ pairs
- $\rightarrow~$ things to worry about:
 - JES
 - jet-jet interconnection
 - background + underlying events
 - how good is MC?

 $\delta m_t^{
m exp~ex} \cong 1 \; {
m GeV} \; ({
m LHC})$ $\delta m_t^{
m exp~ex} \cong 0.2 \; {
m GeV} \; ({
m ILC})$

Source of uncertainty	Hadronic δM _{top} (GeV)	Fitted δM _{top} (GeV)
Light jet scale	0.9	0.2
b-jet scale	0.7	0.7
b-quark fragm	0.1	0.1
ISR	0.1	0.1
FSR	1.9	0.5
Comb bkg	0.4	0.1
Total	2.3	0.9

Systematics uncertainties: Jet energy calibration 'Out of cone' showering B-fragmentation

What mass?

Pole Mass ? ambiguity: $\Delta m_t \sim \Lambda_{\rm QCD}$ $\Delta m_t \sim \alpha_s(\Gamma_t) \Gamma_t$

Analytic Approach Fleming, Hoang, Mantry, Stewart

e.g. Double differential hemisphere top mass distribution

Factorization Formula

In SCET:

- Depends on a short-
- distance mass !!

- width due to time dilatation. Agrees with soft
- Agrees with soft function for massless dijet

See Sonny's talk for details !

Conclusion

- m_t needs to be known as precise as possible.
- Only measurements of Lagrangian masses are meaningful. Pole mass is irrelevant, i.e. not (never!) a physical observable.
- Threshold scan at the ILC the best understood (and probably most precise) method to determine m_t . Not yet clear whether it whether/when ILC will be built.
- Factorization approach to reconstruction feasible. Methods are are totally free of non-perturbative effects at leading order can be explored.
- Important Lesson: The top mass you measure depends on the method you use.

