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The Adler Function

Consider the vacuum polarization function Πµν(Q2)

,Q2 = −q2 > 0

Πµν(Q2) = 16π2i
∫

d4xeiq.x〈0|T (Jµ(x)Jν(0))|0〉

Conservation of Jµ, ∂µJµ = 0 then dictates

the tensor structure

Πµν(Q2) = (qµqν − gµνq2)Π(Q2)

Only Π(Q2)−Π(0) is observable, so it is useful

to eliminate the constant and define the Adler

Function D(Q2)

D(Q2) = −
3

4
Q2 d

dQ2
Π(Q2)

D(Q2) = 3
∑

f

Q2
f [1 + D(Q2)]



The corrections to the parton model result,

D(Q2) are split into a perturbative and non-

perturbative part

D(Q2) = DPT (Q2) + DNP (Q2)

DPT (Q2) = a(Q2)+d1a2(Q2)+d2a3(Q2)+. . .+dnan+1(Q2)+. . .

Here a(Q2) is the running coupling. At one-

loop level

a(Q2) =
2

b ln(Q2/Λ2)

b = (11N − 2Nf)/6 is the first beta-function

coefficient for SU(N) QCD with Nf quark flavours.

D
(L)
NP (Q2) =

∑

n
Cn

(

Λ2

Q2

)n

The leading OPE contribution for the Adler

function is the dimension 4 gluon condensate

contribution

G0(a(Q
2)) =

1

Q4
〈0|GG|0〉CGG(a(Q2)) ,



Infrared Freezing ?

We are interested in the behaviour of D(Q2) =

DPT (Q2)+DNP (Q2) as Q2 → 0. Clearly at any

fixed order perturbation theory breaks down at

Q2 = Λ2, the Landau pole in the coupling, and

a(Q2) → ∞. Clearly we need a resummation of

perturbation theory to all-orders to address the

freezing question, and we need to combine the

resummation with the OPE condensates. The

large-Nf limit provides a way of formulating

this resummation.



Large-Nf approximation for vacuum polariza-

tion

Consider the Adler D-function we discussed

earlier with perturbative expansion

D(Q2) = a(Q2)+d1a2(Q2)+d2a3(Q2)+. . .+dkak+1+. . .

The coefficient dn may be expanded in powers

of Nf the number of quark flavours

dn = d
[n]
n Nn

f + d
[n−1]
n Nn−1

f + . . . + d
[0]
n

The leading large-Nf coefficient d
[n]
n may be

evaluated to all-orders since it derives from a

restricted set of diagrams obtained by inserting

a chain of fermion bubbles inside the quark

loop
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A crucial ingredient is the chain of n-bubbles,

B
µν
(n)

(k2).

B
µν
(n)

=
(k2gµν − kµkν)

(k2)
2

[

−
Nf

3

(

ln
k2

µ2
+ C

)]n

The constant C depends on the subtraction

procedure used to renormalise the bubble. With

MS subtraction C = −5
3. We shall choose to

work in the “V-scheme” which corresponds to

MS with the scale choice µ2 = e−5/3Q2, in

which case C = 0.



Applying the Feynman rules to the three dia-

grams then gives d
[n]
n an+1

∼ a
∫

d4k

(2π)4
d4p

(2π)4


 B
σρ
(n)

(k2)Tr



γν
1

p/ + q/ + k/
γρ

1

p/ + q/
γµ

1

p/
γσ

1

p/ + k/





+ 2B
σρ
(n)

(k2)Tr



γν
1

p/ + q/
γµ

1

p/
γσ

1

p/ + k/
γρ

1

p/









∼ a
∫

d4k

(2π)4
d4p

(2π)4



B
σρ
(n)

(k2)Xνρµσ + 2B
σρ
(n)

(k2)X̄νµσρ



,

The loop integrals can be evaluated using

the Gegenbauer polynomial x-space technique,

with the result

d
[n]
n (V ) =

−2

3
(n + 1)

(

−1

6

)n [

−2n −
n + 6

2n+2

+
16

n + 1

∑

n
2+1>m>0

m(1 − 2−2m)

× (1 − 22m−n−2)ζ2m+1

]

n! .



Leading-b approximation

This large-Nf result can describe QED vacuum

polarization, but for QCD the corrections to

the gluon propagator involve gluon and ghost

loops, and are gauge (ξ)-dependent. The re-

sult for Π0(k
2) is proportional to −Nf/3 which

is the first QED beta-function coefficient, b.

In QCD one expects large-order behaviour of

the form dn ∼ Knγ(b/2)nn! involving the QCD

beta-function coefficient b = (33 − 2Nf)/6, it

is then natural to replace Nf by (33/2−3b) to

obtain an expansion in powers of b

dn = d
(n)
n bn + d

(n−1)
n bn−1 + . . . + d

(0)
n

The leading-b term d
(L)
n ≡ d

(n)
n bn = (−3)nd

[n]
n bn

can then be used to approximate dn to all-

orders, and an all-orders resummation of these

terms performed to obtain D
(L)
PT (Q2).



If we use the Borel method to define the all-

orders perturbative result we obtain

D
(L)
PT (Q2) =

∫ ∞

0
dz e−z/a(Q2)B[D

(L)
PT ](z) .

The Borel transform is given by

B[D
(L)
PT ](z) =

∞
∑

n=1

A0(n) − A1(n)zn
(

1 + z
zn

)2
+

A1(n)zn
(

1 + z
zn

)

+
∞
∑

n=1

B0(n) + B1(n)zn
(

1 − z
zn

)2
−

B1(n)zn
(

1 − z
zn

)

The residues are given by

A0(n) =
8

3

(−1)n+1(3n2 + 6n + 2)

n2(n + 1)2(n + 2)2

A1(n) =
8

3

b(−1)n+1(n + 3
2)

n2(n + 1)2(n + 2)2

B0(1) = 0, B0(2) = 1, B0(n) = −A0(−n) n ≥ 3

B1(1) = 0, B1(2) = −
b

4
, B1(n) = −A1(−n) n ≥ 3
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For the Adler function in leading-b approxi-

mation there are single and double poles in

B[D
(L)
PT ](z) at positions z = zn and z = −zn

with zn ≡ 2n/b, n = 1,2,3. The singulari-

ties on the positive real semi-axis are the in-

frared renormalons, IRn and those on the neg-

ative real semi-axis are ultraviolet renormalons,

UV n. We shall see that they correspond to in-

tegration over the bubble-chain momentum k2

in the regions k2 < Q2 and k2 > Q2, re spec-

tively.



The (PV regulated) Borel integral may be eval-

uated in terms of Ei functions, but notice that

the Borel integral diverges for Q2 < Λ2 , and

potentially for Q2 = Λ2 !

D
(L)
PT (Q2) =

∞
∑

n=1

[znezn/a(Q2)Ei

(

zn

a(Q2)

)

×

[

zn

a(Q2)
(A0(n) − znA1(n)) − znA1(n)

]

+ (A0(n) − znA1(n))]

+
∞
∑

n=1

zn[e
−zn/a(Q2)Ei

(

zn

a(Q2)

)

×

[

zn

a(Q2)
(B0(n) + znB1(n)) − znB1(n)

]

− (B0(n) + znB1(n))]

This expression has the property that it is

finite and continuous at Q2 = Λ2 and freezes

smoothly to a freezing limit of D
(L)
PT (0) = 0.

Similar behaviour is found for GLS/polarized

Bjorken and unpolarized Bjorken DIS sum rules

K
(L)
PT (Q2) and U

(L)
PT (Q2).



DIS sum rules

The polarised Bjorken (pBj) and GLS sum rules

are defined as

KpBj ≡
∫ 1

0
g
ep−en
1 (x, Q2)dx

=
1

6

∣

∣

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

∣

∣



1 −
3

4
CFK(Q2)



 ,

KGLS ≡
1

2

∫ 1

0
F

ν̄p+νp
3 (x, Q2)dx

= 3



1 −
3

4
CFK(Q2)



 .

K(Q2) being the perturbative correction to

the parton model result. We have neglected

contributions due to “light-by-light” diagrams

– which when omitted render the perturbative

corrections to KGLS and KpBj identical.



Finally, the unpolarised Bjorken sum rule (uBj)

is defined as

UuBj ≡
∫ 1

0
F

ν̄p−νp
1 (x, Q2)dx

=



1 −
1

2
CFU(Q2)





Leading-b results for K
(L)
PT (Q2) and U

(L)
PT (Q2)

can be computed from the diagrams

n

1
2

1 2 n

2

n

1



The expressions for B[K
(L)
PT ](z) and B[U

(L)
PT ](z)

are

B[K
(L)
PT ](z) =

4/9
(

1 + z
z1

) −
1/18

(

1 + z
z2

) +
8/9

(

1 − z
z1

)

−
5/18

(

1 − z
z2

) .

B[U
(L)
PT ](z) =

1/6
(

1 + z
z2

) +
4/3

(

1 − z
z1

) −
1/2

(

1 − z
z2

) .



The resummed results are

K
(L)
PT (Q2) =

1

9b



− 8ez1/a(Q2)Ei(−z1/a(Q2))

+ 2ez2/a(Q2)Ei(−z2/a(Q2))

+ 16e−z1/a(Q2)Ei(z1/a(Q2))

− 10e−z2/a(Q2)Ei(z2/a(Q2))



,

U
(L)
PT (Q2) =

1

3b



8e−z1/a(Q2)Ei(z1/a(Q2))

− 6e−z2/a(Q2)Ei(z2/a(Q2))

− 2ez2/a(Q2)Ei(−z2/a(Q2))



 .
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The observables vanish in the vicinity of Q2 =

Λ2 and then freeze smoothly to zero through

negative values.



There is potentially a divergence proportional

to ln a(Q2) at Q2 = Λ2. The coefficient of this

divergent term is

−
∞
∑

n+1

z2
n[A1(n) + B1(n)]

For K
(L)
PT (Q2) and U

(L)
PT (Q2) the equivalent co-

efficients are (−8 + 2 = 16 − 10 = 0) and

(8 − 6 − 2) = 0, respectively. There is a re-

lation between IR and UV renormalon residues

which ensures the divergent term vanishes

z2
n+3B1(n + 3) = −z2

nA1(n)

This ensures that

∞
∑

n=1

z2
n[A1(n) + B1(n)] = 0

Another similar relation is

A0(n) = −B0(n + 2)

We shall show that these relations are un-

derwritten by continuity of the characteristic

function in the skeleton expansion.



The skeleton expansion

In QED the insertion of chains of bubbles into

a basic skeleton diagram produces a well de-

fined skeleton expansion.

d
(L)
n an+1 = a

∫ ∞

0
dk2ωD





k2

Q2





(

−
ba

2
ln





−k2

Q2





)n
,

⇒ D
(L)
PT (Q2) '

∞
∑

n=0

d
(L)
n Nn

f an+1

= Q2
∫ ∞

0

d2k

k2
ωD





k2

Q2





k2

Q2





a

1 + ba
2 ln

(

−k2

Q2

)





which can be written as

D
(L)
PT (Q2) =

∫ ∞

0
dt ωD(t)a(tQ2) .

Here ωD(t) is the characteristic function. It

satisfies the normalization condition
∫ ∞

0
dt ωD(t) = 1 ,



ωD(t) and its first three derivatives are contin-
uous at t = 1

D
(L)
PT =

∫ 1

0
dtωIR

D (t)a(tQ2) +
∫ ∞

1
dtωUV

D a(tQ2)

ωD(t) can be derived by using classic QED
work of Baker and Johnson on vacuum polar-
ization

Π(Q2) =

∫ ∞

0
dt ωΠ(t)a(tQ2)

where the characterisitic function ωΠ(t) is given
by

ωΠ(t) = −
4

3



















tΞ(t) t ≤ 1 ↔ IR

1
t Ξ

(

1
t

)

t ≥ 1 ↔ UV

Ξ(t) is given by

Ξ(t) ≡
4

3t
[1 − ln t +

(

5

2
−

3

2
ln t

)

t

+
(1 + t)2

t
[L2(−t) + ln t ln(1 + t)]]



Ξ(t) corresponds to the Bethe-Salpeter kernel

for the scattering of light-by-light involving the

diagrams

kq

kq

q k

kq

kq

q k

Notice that by attaching the ends of the fermion

bubble chain to the momentum k external prop-

agators of these one-loop diagrams one repro-

duces the topology of the three two-loop bub-

ble chain diagrams.
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The skeleton expansion can be transformed

into the Borel representation for Q2 > Λ2 by

a change of variable

ωIR
D (t) =

b

2

∞
∑

n=1

−z2
n+1B1(n + 1)tn

− ln t
∞
∑

n=2

(n + 1)2[B0(n + 1)

+ zn+1B1(n + 1)]tn

ωUV
D (t) =

b

2

∞
∑

n=1

z2
n−1A1(n − 1)t−n

+ ln t
∞
∑

n=2

(n − 1)2[A0(n − 1)

− zn−1A1(n − 1)]t−n.

For Q2 < Λ2 the skeleton expansion is equiv-

alent to a modified Borel representation

D
(L)
PT (Q2) =

∫ −∞

0
dz e−z/a(Q2)B[D

(L)
PT ](z) .



One can then show that continuity of ωD(t)

and its first three derivatives at t = 1, and

equivalently finiteness of D
(L)
PT (Q2) and its first

three derivatives d/d lnQ at Q2 = Λ2 is under-

written by the following relations between the

A0,1 and B0,1 residues

∞
∑

n=1

z2
n[A1(n) + B1(n)] = 0

∞
∑

n=1

[2z3
n(A1(n)−B1(n))−z2

n(A0(n)+B0(n)] = 0 .

∞
∑

n=1

[3z4
n(A1(n)+B1(n))−2z3

n(A0(n)−B0(n))] = 0 .

∞
∑

n=1

[4z5
n(A1(n)−B1(n))−3z4

n(A0(n)+B0(n))] = 0 .



OPE and IR renormalon ambiguities

The regular OPE is a sum over the contri-

butions of condensates with different mass di-

mensions. In the case of the Adler function the

dimension four gluon condensate is the leading

contribution

G0(a(Q
2)) =

1

Q4
〈0|GG|0〉CGG(a(Q2)) ,

where CGG(a(Q2)) is the Wilson coefficient.

The OPE is of the form

D
(L)
NP (Q2) =

∑

n
Cn

(

Λ2

Q2

)n

The nth term in this expansion will be of the

form

Cn(a(Q
2)) = Cn[a(Q

2)]
δn

(1 + O(a)) .

The exponent δn corresponding to the anoma-

lous dimension of the condensate operator con-

cerned.



Non-logarithmic UV divergences lead to an am-

biguous imaginary part in the coefficient so

that Cn = C
(R)
n ± iC

(I)
n . If one considers an

IRn renormalon singularity in the Borel plane

to be of the form Kn/(1 − z/zn)
γn then one

finds an ambiguous imaginary part arising of

the form

Im[DPT ] = ±Kn
πz

γn
n

Γ(γn)
e−zn/a(Q2)a1−γn[1 + O(a)] .

Here the ± ambiguity comes from routing

the contour above or below the real z-axis in

the Borel plane. This is structurally the same

as the ambiguous OPE term above, and if

C
(I)
n = Knπz

γn
n /Γ(γn) and δn = 1−γn, then the

PT Borel and NP OPE ambiguities can cancel

against each other. Taking a PV of the Borel

integral corresponds to averaging over the ±

possibilities.



The NP component

It is easy to show that the ambiguous imagi-

nary part in D
(L)
PT arising from IR renormalons

for Q2 > Λ2 and UV renormalons for Q2 < Λ2

can be written directly in terms of ωIR
D and

ωUV
D

Im[D
(L)
PT (Q2)] = ±

2π

b

Λ2

Q2
ωIR
D

(

Λ2

Q2

)

(Q2 > Λ2)

Im[D
(L)
PT (Q2)] = ±

2π

b

Λ2

Q2
ωUV
D

(

Λ2

Q2

)

(Q2 < Λ2)

Continuity at Q2 = Λ2 then follows from con-

tinuity of ωD(t) at t = 1. In principle the real

part of the OPE condensates are independent

of the imaginary, but continuity and finiteness

involve the set of relations between A0,1 and

B0,1 that we have just noted. Continuity nat-

urally follows if we write

D
(L)
NP (Q2) =

(

κ ±
2πi

b

)
∫ Λ2/Q2

0
dt

(

ωD(t) + t
dωD(t)

dt

)

.



Here κ is an overall real non-perturbative con-

stant. If the PT component is PV regulated

then one averages over the ± possibilities for

contour routing, combining with D
(L)
PT one can

then write down the overall result for D(L)(Q2)

D(L)(Q2) =

∫ ∞

0
dt



ωD(t)a(tQ2)

+ κ

(

ωD(t) + t
dωD(t)

dt

)

θ(Λ2 − tQ2)



 .

The Q2 evolution is fixed by the non-perturbative

constant κ and by Λ.
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The bold curves show the choice κ = 0, i.e.

just the PT component as in the earlier plots.

The upper and lower curves correspond to the

choices κ = 1 and κ = −1, respectively.



The GDH sum rule

Consider the Q2-dependent integral

I1(Q
2) =

2M2

Q2

∫ 1

0
g1(x, Q2) dx

There is an exact low-energy sum rule due to

Gerasimov-Drell-Hearn (GDH)

I1(0) =
−µ2

A

4

where µA is the nucleon anomalous magnetic

moment in nuclear magnetons. For the polar-

ized Bjorken sum rule

KpBj(Q
2) ≡

∫ 1

0
g
ep−en
1 (x, Q2)dx

=
1

6

∣

∣

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

∣

∣



1 −
3

4
CFK(Q2)



 ,

we would then expect that as Q2 → 0

2M2

Q2
KpBj(Q

2) →
(µ2

A,n − µ2
A,p)

4



Conclusions

The one-chain term of a QCD skeleton expan-

sion naturally results in IR freezing behaviour

as Q2 → 0. The freezing limit is just the parton

model result.

Continuity and finiteness of the Euclidean ob-

servable at Q2 = Λ2 are underwritten by the

continuity of the characteristic function ω(t)
at t = 1.

Continuity and finiteness translate into previ-

ously unexplained relations between UV and IR

renormalon residues

The ambiguous imaginary part induced by IR

or UV renormalon ambiguities may be written

directly in terms of the characteristic function.

Continuity then suggests that non-perturbative

effects may similarly be written in terms of the

characteristic function, and are characterized

by a single overall non-perturbative constant

κ.


