Jet Energy Calibration
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Introduction
» Jet energy calibration can be divided in 4 steps
1. calorimeter

tower/cluster
reconstruction
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2. jet making

3. jet calibration
from
calorimeter to
particle scale
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4. jet calibration
from particle
scale to the
parton scale
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Experimental Challenges

» Calorimeter Cluster
Reconstruction ECAL Middle ECAL Middle

shower containment
particle separation and
identification
electronics noise

pile-up
» Jet Making

e choice of algorithm
(cone, K ,...)

e |jetsize

e overlap with electrons

» Jet Calibration to Particle
Level

e/h compensation

dead material corrections
out-of-cluster corrections
out-of-jet corrections

» Jet Calibration to Parton
Level

e maitch to parton jet <

e differences for light-quark, Invisible Energy
b-quark, gluon-jets

e MC dependencies
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Example: The ATLAS Calorimeters

» Layout of the ATLAS
Calorimeters

» EM LAr-Pb accordion
calorimeter
e Barrel (EMB):
n| < 1.4
e End-cap (EMEC):
1.375 < |n| < 3.2

» Hadron calorimeters
e Barrel (Tile):
Scint.-Steel n| < 1.7 =8

e End-cap (HEC):

LA r- C u I A : =
: 1EM Endcap Cal.
» Forward calorimeter ‘,,..._ —

(FCal) 3.2 < |n| < 4.9

e FCal1: LAr-Cu
o FCal2&3: LAr-W
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Reconstruction Objects in Calorimetry

» The cell is the
smallest reco
object

e all ATLAS
calorimeters
together provide
187652 cells

e each cell provides
mainly the raw
reconstructed
energy in MeV

> A tower is a group of cells (or even a group of fractions of cells) in a fixed
An x A¢ grid over some or all samplings

e contains the sum of cell (fraction) energies and the center of the grid square (n and ¢) as members
e inusein ATLAS are 65536 LAr EM only LArTowers with An X A¢ = 0.025 x 27 /256
e and 6400 CaloTowers including all calorimeters with with An X A¢ = 0.1 X 27 /64

» A cluster is a group of cells (or even fraction of cells) formed around a
seed cell

e is the main reco object for calorimetry

e with either a fixed size in An x A (sliding window)

e orvariable borders based on the significance of the cells (topo cluster)

e contains lots of data members based on weighted cell members for energy, position and shape
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Clusters

» Cluster algorithms need to serve multiple purposes

e suppress noise (electronics noise and pile-up)
e Kkeep electromagnetic showers in one cluster
e separate multiple signals which are close by

e work on very different sub-systems

» Plots on the right and below
show large variations in n for

e electronics noise at high luminosity
(L=10%cm™2s7%)
(~1.5-10" —2.10% MeV)

e pile-up noise at high luminosity
(~3-100 — 3. 10*MeV)

e cellvolume (~ 2 - 10* — 3. 108, mm?3)
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Topological Clusters (ATLAS)

» Cluster Making

e form clusters around seed cells with

|Eseed’ > 4(Uelec—noise > O'pile—up—noise)

expand clusters around neighbor cells with |Ecigh| > 20

include perimeter cells with |Ecei| > Oc

merge clusters if they share a neighbor cell

expansion is driven by neighbors in 3D:

usually 8 neighbors in the same layer (2D) plus cells overlapping in n
and ¢ with central cell in next and previous layer (just 2 if granularity
would be the same)

» Cluster Splitting

e search for local maxima in cell energy with Egeeq > 500 MeV in all
clustered cells in EM-samplings (HAD-samplings secondary)

e re-cluster around local maxima with same neighbor driven algorithm
but no thresholds and no merging

e cells at cluster borders are shared with energy and distance
dependent weights
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Topological Clusters (ATLAS) » Example

» look at di-jet MC sample including electronics noise with activity in the
forward region

» plots show |E.i| on a color coded log-scale in MeV in the first (EM) FCal
sampling for one event

|E| > 2 onoise |E| > 4 0poice 4 /2 /0 topological clusters
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2 o cut is removing cells from the signal region

4 o cut shows seeds for the cluster maker
after clustering all cells in the signal regions are kept

cluster splitter finds hot spots
Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007
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Jets

» Jets are

e a collection of 4-vectors based on tracks and/or calorimeter objects
(cells or towers or clusters)

e defined by a metric on 4-vector level

e the easiest reference level to base particle level calibration or
monitoring of calibration on although in most cases the constituents
are the objects being calibrated

e receiving the final parton level calibration
e used for physics studies

» ATLAS uses

e a seeded cone algorithm with split and merge and towers or topo
clusters as input for R = 0.4 and 0.7 with seed cuts of typically 1 or
2GeVin E;

e the K, algorithm (FastKt) with towers or topo clusters as input (no
pre-clustering) for R = 0.4 and 0.6

o typically an E, cut of 7 or 10 GeV on the final jets
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Jet Input

» Pro’s & Con’s of towers and topo clusters as jet input

» Towers
+ have always the same fixed size An x A¢p = 0.1 x 0.1
-+ have no seed — all cells end up in towers

do not provide noise or pile-up suppression
do not contain showers

» Topo Clusters

-+ provide efficient noise and pile-up suppression
-+ correspond to individual hadrons
typically have detector region dependent size r ~ 0.1 — 0.2

1 cluster corresponds to 1.6 truth particles 1 cluster corresponds to 1.6 truth particles
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Calibration Approaches

» Jet Calibration

e use towers or topo clusters on EM-scale as input to jets

e maitch a truth particle jet with each reco jet

e fit a cell-level calibration function based on energy density to all
matched jet pairs

» | ocal Hadron Calibration

e calibrate topo clusters independent of any jet algorithm to hadronic

scale
e make jets out of calibrated topo clusters

» |n-situ check of hadronic scale

e can use single isolated hadrons from minimum bias and from r
decays to check hadronic scale (E/p-ratio)

» Final In-situ Calibration

e both approaches above need the final step from hadron to parton

level ~
e with W-mass in tt — Wb Wb — Ivj, jjis

e with p, balanceinZ/v +

S. Menke, MP1 Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 11


http://www.mppmu.mpg.de/~menke

Calorimeter Calibration » Jet-Level Calibrations

» Three different weighting schemes are currently in use

1. Jet Sampling Calibration F. Merrit, J. Proudfout, A. Gupta, et al.
e apply weight to all cells in same sampling
o layer weights: w; = f(Ejet, 1)
e ~ 8 parameters per energy and eta region

2. Jet H1 Cell Weights (BNL) F. Paige et al.

e two step procedure
15! cell weights: w; = f(Ecey/ Veel)

° 2nd

3. Jet H1 Cell Weights (Pisa) C. Roda, I. Vivarelli, A. Dotti, et al.

o cell weights: w; = f(Ecell/ Veell> Ejet)
e similar to BNL method, but with extra info of Eje in cell weights

jet weight w; = f(Eet, 1)

» all three methods use matched truth jet with same jet-algorithm to
determine the true energy
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Jet-Level Calibrations » Linearity

» Compare the three schemes with common setup

» Use isolated jets from Pythia/Geant4 simulated di-jet events from
2 GeV < Ejet < 2TeV

» above 100 GeV Sampling and BNL method reach linearity on 1%-level
» some deviations beyond 1% for Pisa

Ereco/Etruth
Ereco/Etruth

l.o% jetetas 25

00<eta<0.7
& EM
= H1
* Pisa

15<eta<?25
2 EM
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* Pisa
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A. Gupta et al.
S. Menke, MPI Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 13


http://www.mppmu.mpg.de/~menke

Jet-Level Calibrations » Linearity in 7

» Linearity more complicated in n due to changes in calorimeter systems,
dead material, and cracks

» above 100 GeV Sampling and BNL method reach linearity on 2%-level

» again larger deviations for Pisa at low energies
no jet-level fudge factor applied plus some SW problems
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A. Gupta et al.
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Jet-Level Calibrations » Resolution

sampling calibration slightly better at lowest energies
cell energy density calibrations better at medium and high energies
differences shrink at highest energies

v vyy

BNL method gives & = —2C— @ 0.02 @ gy in central barrel region

v/ E(GeV)

15 et s < 2.5

1500 2000 1500 2000
Jet Energy (GeV) Jet Energy (GeV)

A. Gupta et al.

S. Menke, MPI Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 15


http://www.mppmu.mpg.de/~menke

Calo Calibration » Local Hadron Calibration S. M., G. Pospelov et al.

» (lassify and calibrate topo clusters to
hadron-level
» Classification
e use shower shape variables (cluster moments) like shower
depth and (weighted) energy density of the cell constituents

e em showers are less deep and have higher average energy
density than had showers

e make a cut on expected em fraction for given bin derived

from single pion simulations (right plot) )

-3 -2 -1 0
log10(<p e (MeV/imm?))

» (Calibration

e treat only clusters classified as hadronic
dead material corrections for em clusters are beeing
worked on
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e derive cell weights from Geant4 true energy (calibration hits)
including invisible energy and absorber deposits and
reconstructed cell energy for each 7 region and layer:

| Wi = (Etrue/Ereco), I = bin#(Eciyster> Ecell / Veell)

L e example weights in main sampling of EM calorimeter for

2.0 < |n] < 2.2

4.5

» Correct for dead material and out-of-cluster deposits

S. Menke, MPI Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 16
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Local Hadron Calibration » Energy Corrections

» Cell weights

e account for the
non-compensation of
the calorimeters

e left (right) plot shows
ratio of reco cluster on
em-scale (calibrated
scale) over true
calibration hit contents
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S. Menke, MPI Miinchen Jet Energy Calibration

the cluster is not yet fully calibrated
plot shows ratio of calibration hit truth over pion energy
still need corrections for:

energy deposits outside the calorimeters (dead
material)

and inside the calorimeters but not in reconstructed
clusters (out-of-cluster)

QCD @ LHC, Schlof3 Ringberg, Jan-2007 17
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Local Hadron Calibration » pead material & Out-Of-Cluster Corrections
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» Dead material corrections

e account for deposits in material in front and between calorimeter systems overlapping in n X ¢ with
cells from the cluster (left plot)

» QOut-Of-Cluster corrections (not yet done)

e account for all the rest (right)
e mainly deposits in calorimeter cells left out by the cluster algorithm
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Local Hadron Calibration » Performance

» Use two leading jets (K, with R = 0.6) in di-jet MC samples in the
region 0.2 < |n| < 0.4

» Energy of the leading jets in this sample and region is about

150 4 40 GeV

» plot shows the ratio of total energy of the reconstructed jet over the
energy of a matched truth jet (also K with R = 0.6) with AR < 0.05 for
EM-scale (red); weighted (blue); weighted with DM corrections (black)

S. Menke, MPI Miinchen

Jet Energy Calibration

EM-scale Weighted Weighted+DM

mean (%) 75.3 84.1 93.5

o (%) 5.5 5.8 6.0

o /mean (%) 7.3 6.9 6.5
» mean and relative resolution improve in every

>

step
final deviation from truth jet energy is only 6.5 %

consistent with expected out-of-jet corrections

QCD @ LHC, SchloB3 Ringberg, Jan-2007 19
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In Situ Calibration » W — jj from tt

proton - (anti)proton cross sections
» total cross section for
tt-production is about a factor of
100 larger at LHC as compared
to Tevatron

Tevatron LHC

> o.:(14.0 TeV) = 800 pb

» |LHC will be a top factory with 5
more than 8 - 10° tt-pairs at low 107§
luminosity (L = 10% cm2s72) 105

> in the lepton+jets channel the %
trigger conditions should be ideal F o(E>100Gey) 8

> m; = my provides a direct | 3
constraint on the parton level _ /

» applicable to light jets only up to S R
~ 200 GeV

Ohiggs(My = 150 GeV)
> jets from W are very close
can use only small jet cones

GRS

Oiggs(Myy = 500 GeV)

W.J. Stirling, 1998
S. Menke, MPI Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 20
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W — jj from tt » Event Selection
» usual tt — lvjy jjj, selection

e 1 isolated lepton (e or i) with p; > 20 GeV
o F, >20GeV
®
®

at least 4 jets with p; > 40 GeV
2 light jets
e 1 or 2 jets with b-tag

» additional cut to improve the W — jj
purity
o 150GeV <« my;, < 200 GeV

o +T'4____ All jj combinations

.t

- Only 2light jets

Dnl_v 2 light jets +
~ 150 <m,,< 200

I'L._'L rl it
ED g0 100 20 140 1EU 130 ZDU

J. Schwindling
S. Menke, MPI Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 21
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W — jj from tt » Jet Systematics

> jet size, resolution, and selection
cuts on p, bias the W-mass peak
> jet size for K jets

e below R = 0.3 jets too small to contain hadronic
shower
mass-resolution worsens
e beyond R = 0.7 chance for merged jets from
W-decay increases
method does not work anymore
e optimalregion R = 0.4 — 0.6

) N. Ghodbane
» jet resolution and p, -cut

e for a given relative jet resolution the fitted W-mass
depends on the p | cut
e for agiven p | -cut the fitted mass depends on the jet
resolution
need to account for this bias in the calibration
procedure
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J. Schwindling
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W — jj from tt » Rescaling Method D. Pallin et al.

> assume EZS?” = a(E*Y
ignore any dependency on ¢, n and Ey
> extract my from Gaussian fitsto
di-jet mass-distribution in bins of £
every jet-jet pair appears twice in the histograms
(right plot(s))
> use mass constraint my = m\,¢ for
mean values of fitted Gaussians

m; = /704]1 My with E/-1 in energy bin /

v

extract «; by either
v 2 -fit

( PDG |2
N vV i Y2 W >
minimizing x° = > L 122

> iterative procedure (left plot)

PDG

k _  _k—1 My

b 9% k—1
m;

» template method
smeared MC parton distributions with energy scale « and

MC calib =1

v

(o)

(87

relative resolution 3

S. Menke, MPI Mlinchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 23
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W — jj from tt » Template Method N. Besson, J. Schwindling et al.

Smearing of quark energies:

» method from CDF recently ported to
ATLAS

» generate smeared W — qq (template)
distributions from tt events

> « smears the energy scale
» [ the relative resolution
> Smearing: Eiet =
a X gauss(Eg, 8 x (3.8 GeV + 0.063E,))
» smear angular resolution too:
on = (297/+/Eq(GeV) ® 11) mrad
oy = (224/+/E4(GeV) & 10) mrad

» and smear energy correlated between

jets (p ~ 0.4 due to overlapping jets, UE,
. ?)

120 140 160 180

E, (GeV)

S. Menke, MP1 Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 24
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W — jj from tt » Template Method

» fit “data” to templates (top plot)

» take o and 3 from best y?

> o ~ 0.94 comes out as expected
(bottom plot)

> Dbut typically 3 > 1
need to study impact of UE,
n(n— 1)/2 sets of templates for n
bins of jet energy, ...

> also b-jet scale typically 0.95 of
light jet scale

need to study Z — bb

S. Menke, MPI Miinchen Jet Energy Calibration
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In Situ Calibration » p, -balance in Z/~ + |

> large statistics expected at L = 10%° cm 252

e for 20 GeV < p; < 60 GeV
~ 2Hzfor Z°(— Il) +
~ 0.1 Hz for v +

e for 60 GeV < p,

~ 0.1 Hzfor Z°(— II) +

~ 2Hz for~ +
» ~and Z° — Il are well calibrated EM objects
» two complementary methods are studied

1. p. balance

e recoil against leading jet A¢ > 175°
e sensitive to out-of-jet effects

2. missing E | projection

e vector sum of entire calorimeter response
e recoil of complete hadronic system against Z/~
e no jet-algorithm dependence

S. Menke, MPI Mlinchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007
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pl-balance in Y —|—j » Event Selection ~ -+ jet analysis: S. Jorgensen et al.

w
o

E
E
©
=7}
=
EB
-
=B

> select isolated ~

b |
o

» select highest p, jet

> apply ¢ back-to-back cut

Ad > 175°
> -
Heie av_erage PL Of/y and et for % 10 20 30 40 50 60 70 80N 90 100
analysis T parton
Pt Balance between the hard scattered quark and photon
gagn 0.07983
> p_]_ balance — J_p pJ_ ' pT balance parton level
L

— with phi balance cut

—— without phi balance cut

» iterate Gaussian fits within 1o
around mean to reduce sensitivity
to tails

e )
pT balance (pT parton pT photon)/ pT photon

S. Menke, MPI Mlinchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007
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p -balance in v 4 j » Tower jets

S. Menke, MPI Miinchen

Parton level
Particle level Cone 0.4
Reconstruction level Cone 0.4

Parton level

| Particle level Cone 0.7
_| Reconstruction level Cone 0.7

.........................................................................................................

60 70 80 l 90 100
(pTy+pTparton)/2 (GeV)

Parton level
Particle level Kt (D=1)
| Reconstruction level Kt (D=1)

compare cone with R = 0.4 (top) and
R = 0.7 (middle) with K, with R = 1
(bottom)

on parton- (black), hadron- (blue), and
jet-level (red)

the jet- and hadron-level differences are
mainly due to the jet-style H1 cell
calibration which was obtained from cone
jets with R = 0.7

particle level shows cone jet with R = 0.4
too small

K, with R = 1 too large by similar
amount on particle level (underlying
event and noise)

Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 28
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p. -balance in v 4+ j » Underlying Event

» check jet constituents normalized to

tower size (AU X Aqb = 0.1 x 01) N Transverse plane
transverse ¢-direction of v — jet-axis ‘ Transverse
> outside A¢ = 60° from ~ — jet-axis

» direct test of underlying event in the
signal sample

[Et per protojet UE region ﬂ

» tower protojets (upper plot) contain
15.8 MeV on average (EM-scale) in
transverse direction per tower area

» particle protojets (lower plot) contain
19.1 MeV on average in transverse
direction per tower area

> leads to moderate estimates for average
underlying event transverse energy in
signal jets of (3 GeV for R = 0.7 cone
jets)

» but spread is much larger (factor 5 — 10)

S. Menke, MPI Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 29
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p, -balance in v + j » Radial Jet Profiles

» |ook at jet constituents £, versus distance from jet axis AR (one entry
per constituent)

Cone 0.7
[’Jét‘ciriiiiﬁm Et[GeV]vs R " 2-000 1 ~Jot Constituent ET [GeVI VS R~

Kt extends to larger

e pretty sharp cut at cone
radius for particle-jets and

Particle vl

topo-cluster-jets Sitore L
entries beyond the cone e Coramnt oo o0
radius are due to split & ;

merge procedure

Towers outside jet's
limits due to way of
summing 4-vectors in
TowerNoiseTool

o
—
o
=
<}
e
c
o}
o
o}
(44

e for tower-jets lots of entries
beyond nominal radius
due to recombination of

negative towers with close

Topoclusters behave
like particle level

by positive towers

Topoclusters

‘f:ielﬁtaR

> topo-cluster-jets behave like particle-jets

S. Menke, MPI Mlnchen Jet Energy Calibration QCD @ LHC, Schlof3 Ringberg, Jan-2007 K10
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Conclusions

v

Jet Energy Calibration is a complex task
Choice of Constituents

e towers or clusters?
» Choice of Jet Algorithm and Size
e coneorK,?
e R=0.4,0.6,0.7,1?
» Choice of Calibration Method/Process

e jet-level or cluster-level?

v

e with or without final jet correction?
e di-jet, top-pairs, Z/~v + jet(s)?

» |mpact of Noise, Underlying Event, and Pile-Up
e treat already on cluster level or subtract later from jets?

> Will keep all options open for ’[haI rt of LHC since only data can tell
which way Iis best
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