Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest ^x**-values**

Simon Albi[no](#page-0-0)*^a*

simon@mail.desy.de

2nd Institute for Theoretical Physics, University of Hamburg (DESY)

a in collaboration with B. A. Kniehl, G. Kramer, W. Ochs (hep-ph/0503170)

Ringberg workshop on non-perturbative QCD of jets, 8-10 January 2007 Generalizing FF evolution to small $x - p$. 1/16

Factorization in $e^+e^- \to h+X$

$$
\frac{d\sigma^h}{dx_p}(x_p, s) = \sum_i \int_{x_p}^1 \frac{dy}{y} \frac{d\sigma^i}{d(x_p/y)} \left(\frac{x_p}{y}, s, Q^2\right) D_i^h(y, Q^2)
$$

XS(h) = KS(parton i) × P(i \to h, mom. frac. y)
> Q $\langle Q \rangle$

Q is arbitrary *factorization scale*

Simon Albino (Hamburg University)

Ringberg workshop on non-perturbative OCD of jets, 8-10 January 2007 Generalizing FF evolution to small $x - p$, 2/16

Fixed order perturbation theory

- •Expand partonic XS $\frac{d\sigma^i}{d(x_p/y)} \left(\frac{x_p}{y}, s, Q^2 \right)$ as series in $a_s \left(= \frac{\alpha_s}{2\pi} \right)$
- \rightarrow potentially large $a_s^n \ln^m \frac{Q^2}{s}$ terms
- Solution: choose $Q = O(\sqrt{s})$
- $\bullet\;\longrightarrow\;$ $\rightarrow Q$ dependence of FFs $D_i^h(y,Q^2)$ needed
- Solution at large x_p : DGLAP \equiv pert. Q-evolution

$$
\frac{d}{d \ln Q^2} D(x, Q^2) = \int_x^1 \frac{dy}{y} P(y, a_s(Q^2)) D\left(\frac{x}{y}, Q^2\right)
$$

$$
(D = (D_g, D_d, D_{\bar{d}}, D_u, ...))
$$

• \rightarrow small x_p : Expansion of P in a_s fails

Simon Albino (Hamburg University)

Ringberg workshop on non-perturbative OCD of jets, 8-10 January 2007 Generalizing FF evolution to small x – p. 3/16

Applications at large ^x^p

Fitting procedure (KKP, Kretzer, AKK)

• Theoretical constraints

 $D_i(x, Q_0^2) = N_i x^{\alpha_i} (1-x)^{\beta_i}$, fit $\{N_i, \alpha_i, \beta_i\}, \alpha_s(M_Z)$

• Experimental constraints

 $e^+e^-\rightarrow (\pi^\pm, K^\pm, p/\bar p)+X$ — ALEPH, DELPHI, OPAL, SLD, TPC with $x_p > 0.1$ ("large" x_p)

Results

- •• $\alpha_s(M_Z)$ competitive
- Describe high p_T $pp(\bar{p}) \rightarrow (\pi^{\pm}, K^{\pm}, p/\bar{p}) + X$ PHENIX, UA1, STAR

FF and PDF fitting procedures similar

Simon Albino (Hamburg University)

Small x_p **vs. small** x_B

Timelike P contains double logs $(1/x)(a_s \ln x)^2(a_s \ln^2 x)^r, r = -1, ..., \infty$

 \longrightarrow \rightarrow poor small x_p description when $ln(1/x_p) = O(a_s^{-1/2})$

Simon Albino (Hamburg University)

Ringberg workshop on non-perturbative OCD of jets, 8-10 January 2007 Generalizing FF evolution to small $x - p$, 5/16

Double Logarithmic Approximation

Largest logs (DLs): $q\bar{q} \rightarrow q\bar{q} + N$ gluons (tree level) **gluon i−1 gluon i quar^k** •• $\mathcal{P}(G_{i-1} \to G_i + ...) \propto a_s \frac{d\theta_i}{\theta_i} \frac{dE_i}{E_i} \simeq a_s \ln^2$ \bullet Strong ordering: $(E, \theta)_i \ll (E, \theta)_{i-1}$ •• Collinear part \in FFs: $E_T = E_{i-1}\theta_{i-1} > Q$ $\therefore E_i\theta_i > yQ$

$$
\rightarrow \frac{d}{d \ln Q^2} D(x, Q^2) = \int_x^1 \frac{dy}{y} a_s(y^2 Q^2) P^{(0)}(y) D\left(\frac{x}{y}, y^2 Q^2\right)
$$

Take small *x* sings in
$$
P^{(0)}(x)
$$
 only
\n
$$
\frac{d}{d \ln Q^2} D(x, Q^2) = \int_x^1 \frac{dy}{y} \frac{2C_A}{y} A a_s(y^2 Q^2) D\left(\frac{x}{y}, y^2 Q^2\right)
$$
\n
$$
\rightarrow \text{DLA equation, contains all DLs}
$$
\n
$$
A^2 = A
$$

Simon Albino (Hamburg University)

DLA vs. DGLAP

Our approach:

- keep DGLAP (large x_p)
- improve P at small x_p via DLA

$$
a_s P^{(0)}(x) \longrightarrow a_s \overline{P}^{(0)}(x) + P^{\text{DL}}(x, a_s)
$$

\n
$$
\uparrow
$$
LO DL subtracted

Simon Albino (Hamburg University)

Ringberg workshop on non-perturbative OCD of jets, 8-10 January 2007 Generalizing FF evolution to small $x - p$, 7/16

DL resummation in P

Insert DGLAP $2(P^{\text{DL}})^{2} + \omega P^{\text{DL}} - 2C_{A}a_{s}A = 0$

+ boundary condition:

 $_{x}$

As $x \to 0$, $P^{\rm DL}(x,a_s) \to \frac{1}{x}$

Results in Mellin space

$$
f(\omega) = \int_0^1 dx x^{\omega} f(x)
$$

 $a_s P^{\text{DL}(0)}(\omega, a_s) = \begin{pmatrix} 0 & a_s \frac{4C_F}{\omega} \\ 0 & a_s \frac{2C_A}{\omega} \end{pmatrix} + O(a_s^2)$ $\omega \to 0$ sings:

$$
\rightarrow \text{Solution (agrees with NLO too):} \qquad P^{\text{DL}}(\omega, a_s) \ni \frac{a_s}{\omega} \left(\frac{a_s}{\omega^2}\right)^r
$$

$$
P^{\text{DL}}(\omega, a_s) = \frac{A}{4} \left(-\omega + \sqrt{\omega^2 + 16C_A a_s} \right)
$$

\n
$$
P^{\text{DL}}(x, a_s) = \frac{A \sqrt{C_A a_s}}{x \ln \frac{1}{x}} J_1 \left(4\sqrt{C_A a_s} \ln \frac{1}{x} \right)
$$

\n
$$
A s x \to 0, P^{\text{DL}}(x, a_s) \to \frac{1}{x} \ln^{-\frac{3}{2}} \frac{1}{x}
$$

\n
$$
\frac{d}{d \ln Q^2} D(\omega, Q^2) = P(\omega, a_s(Q^2)) D(\omega, Q^2)
$$

\n
$$
\text{DLA equation:}
$$

\n
$$
\omega + 2 \frac{d}{d \ln Q^2} \frac{1}{d \ln Q^2} D(\omega, Q^2)
$$

\n
$$
= 2C_A a_s(Q^2) AD(\omega, Q^2)
$$

Simon Albino (Hamburg University)

 $\, P \,$

Higher logarithms

\n- Double logs:
$$
\frac{a_s}{\omega} \left(\frac{a_s}{\omega^2} \right)^r
$$
\n- General logs: $\left(\frac{a_s}{\omega} \right)^m \left(\frac{a_s}{\omega^2} \right)^r$
\n

Extend approach to any order $n,$ any class of logs m

$$
P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n \overline{P}^{(n)}(\omega) + \sum_{m=1}^{\infty} \left(\frac{a_s}{\omega}\right)^m g_m\left(\frac{a_s}{\omega^2}\right)
$$

$$
a_s^n \overline{P}^{(n)}(\omega)
$$

• =
$$
a_s^n P^{(n)}(\omega)
$$
, logs subtracted

- Finite as $\omega \to 0$
- Important for large x_p

 $\left(\frac{a_s}{\omega}\right)^m g_m\left(\frac{a_s}{\omega^2}\right)$

- Contains all class m logarithms
- $m = 1$: DLs known
- $m = 2$: SLs known for P_{gg}
- Finite as $\omega \rightarrow 0$?
- Important for small x_p

Relation to MLLA

Approach equivalent to

$$
\frac{d}{d\ln Q^2}D(\omega, Q^2) = \left(\omega + 2\frac{d}{d\ln Q^2}\right)^{-1} 2C_A a_s(Q^2)AD(\omega, Q^2) \leftarrow \text{DLA eq.}
$$

$$
+ a_s(Q^2)\overline{P}^{(0)}(\omega)D(\omega, Q^2) \leftarrow \text{Fixed order}
$$

MLLA limit:

- Approximations
	- Set $\omega =$

$$
= 0 \text{ in } a_s \overline{P}^{(0)}(\omega) \qquad \qquad \text{DLA: } D_{q,\overline{q}} \simeq \frac{C_F}{C_A} D_g
$$

- Take gluon componen^t
- \longrightarrow MLLA equation:

$$
\left(\omega + 2\frac{d}{d\ln Q^2}\right)\frac{d}{d\ln Q^2}D_g(\omega, Q^2) = 2C_A a_s(Q^2)D_g(\omega, Q^2)
$$

$$
-\left(\omega + 2\frac{d}{d\ln Q^2}\right)a_s(Q^2)\frac{a}{2}D_g(\omega, Q^2)
$$

$$
\uparrow a = \frac{11}{3}C_A + \frac{4}{3}T_R n_f \left(1 - \frac{2C_F}{C_A}\right)
$$

Theory vs. data — method

• Fit to light charged hadron data, $\ln(1/x_p) < \ln \sqrt{s}$ \bullet LO, $Q=\sqrt{s},$ $Q_0=14$ GeV, $n_f=5$

$$
\frac{1}{\sigma(s)}\frac{d\sigma}{dx_p}(x_p, s) = \frac{1}{n_f\langle e_q^2(s)\rangle} \sum_q e_q^2(s) D_q^+(x_p, s)
$$

Fitted quantities:

- $D_g(x,Q_0^2)$ \bullet 1 $\frac{1}{2} \sum_{\alpha=uc} D_{\alpha}(x,Q_0^2)$ \bullet 1 $\frac{1}{3}\sum_{\alpha=dsb}D_{\alpha}(x,Q_{0}^{2})$
- \bullet $\Lambda_{\rm QCD}$

$$
D_i(x, Q_0^2) = N \exp[-c \ln^2 x] x^{\alpha} (1 - x)^{\beta}
$$

large $x: \to Nx^{\alpha} (1 - x)^{\beta}$ (as in DGLAP fits)
small $x: \to N \exp[-c \ln^2 \frac{1}{x} - \alpha \ln \frac{1}{x}]$ (DLA, large Q)

$$
D_{q,\overline{q}} \simeq \frac{C_F}{C_A} D_g \text{ (DLA):}
$$

$$
c_{uc} = c_{dsb} = c_g, \alpha_{uc} = \alpha_{dsb} = \alpha_g \text{ (use)}
$$

$$
N_q = \frac{4}{9} N_g \text{ (ignore)}
$$

Theory (new and old) vs. data

Simon Albino (Hamburg University)

Ringberg workshop on non-perturbative OCD of jets, 8-10 January 2007 Generalizing FF evolution to small $x - p$, 13/16

Hadron mass effects at small ^x^p

Particles confined to 3-axis: $(V^+, V^-) = \frac{1}{\sqrt{2}}V^0(+, -)V^3$ ${\rm\bf V}_T = {\bf 0}$

Leading twist factorization:

•
$$
k = \left(\frac{p_h^+}{y}, 0\right)
$$

\n• $\frac{d\sigma}{d\eta}(\eta, s) = \int_{\eta}^1 \frac{dy}{y} \frac{d\sigma}{dy}(y, s, Q^2) D\left(\frac{\eta}{y}, Q^2\right)$

Relation to experiment:

•
$$
x_p = \frac{2p_h \cdot q}{Q^2} = \eta \left(1 - \frac{m_h^2}{s\eta^2} \right)
$$

•
$$
\frac{d\sigma}{dx_p}(x_p, s) = \frac{1}{1 + \frac{m_h^2}{s\eta^2(x_p)}} \frac{d\sigma}{d\eta}(\eta(x_p), s)
$$

Both fits:
$$
\chi_{\text{DF}}^2 \simeq 2
$$
, $m_h \simeq 300 \text{ MeV}$
DL unresummed $\boxed{\text{DL} \text{measured}}$
 $\Lambda_{\text{QCD}} \text{ (MeV)}$ 1300 400

Resummed fit: $110\% \times \text{DLA}$ -anticipated N_g/N_g

Variable η :

- Like DIS Nachtmann scaling variable
- 3-axis boost invariant
- •• true momentum fraction in factorization

Simon Albino (Hamburg University)

Ringberg workshop on non-perturbative OCD of jets, 8-10 January 2007 Generalizing FF evolution to small $x - p$, 14/16

OPAL gluon jet data

Hadron mass effects $\rightarrow m_h \simeq 300$ MeV, $\Lambda_{\rm QCD} \simeq 500$ MeV

Summary

- Resumming DLs extends DGLAP evolution to small x_p (peak region)
- Large x_p description remains good
- Ignore large x_p effects + take DLA limit on FFs \rightarrow MLLA
- Hadron mass effects improve fits, resummation gives better $\Lambda_{\rm QCD}$

Further work:

- Extend NLO global fits to smaller x_p (currently $0.1 < x_p < 1$)
- Determine SLs