Thermal Measurements and FEA of the 2S Module for the CMS Phase-2 Tracker Upgrade

Lutz Feld, Katja Klein, Marius Preuten, <u>Max Rauch</u>, Nicolas Röwert, Michael Wlochal

1. Physikalisches Institut B, RWTH Aachen

3th July 2017

Forum on Tracking Detector Mechanics 2017, Marseille

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

Outline

Compact Muon Solenoid

3rd July 2017

max.rauch@cern.ch, Forum on Tracking Detector Mechanics 2017, Marseille

Silicon Tracker

→upgrade from LHC to HL-LHC

- →up to 5 times higher luminosity
- →up to 10 times more integrated luminosity
- insufficient cooling of irradiated silicon sensors at HL-LHC
- If full replacement of the current tracker detector with an upgrade in 2024 planned

non-functional modules functional modules

3rd July 2017

CMS Phase-2 Tracker

Inner Tracker

two types of hybrid pixel modules (1x2 and 2x2 chips), 4.9m², 2G channels

Macro-Pixel Sensor Modules:

5500 modules, 11M strip channels, 170M macro-pixels, different sensor spacings, upto 10^{15} neq/cm²

2 Strip Modules:

7500 modules, 30M strip channels, 1.8mm and 4.0mm sensor spacing, up to $3 \cdot 10^{14}$ neq/cm²

3rd July 2017

max.rauch@cern.ch, Forum on Tracking Detector Mechanics 2017, Marseille

Radiation Damage

- silicon sensors will suffer from damage due to irradiation at HL-LHC conditions
 - instantaneous luminosities of 1 ·10³⁵ cm⁻²s⁻¹
- leakage current (power) increases
 - with radiation damage
 - with temperature
- **goal:** keep the silicon sensor temperatures at lowest possible temperatures
- **challenge:** Outer Tracker will have an overall power of 100kW

Outline

Top sensor

strip direction

2 Front-end flex-hybrids with read-out chips

- 2032 channel
- chips receive signals from both bottom and top sensor

Service hybrid with DC-DCconverters and opto-module

- 2 stage DC-DC-converter (from 11V to 2.5V and from 2.5V to 1.2V)
 - \rightarrow power efficiency about 50%

Aluminum carbon-fiber stiffeners

- carbon-fiber re-enforced aluminum for the CTE (≈4ppm/K) match between silicon sensors and spacers
- screwing holes for fixture and cooling

Kapton strips for the high-voltage isolation of the sensor

 carbon-fiber re-enforced aluminum for the CTE (≈4ppm/K) match between silicon sensors and spacers

2 n-in-p silicon strip sensors

- 10cm x 10cm, 2 x 5cm strip length,
- 90µm pitch
- 320µm thickness, 200µm active thickness

mass ca. 40g

Bottom sensor

size roughly 14cm x 12cm

Power of the 2S Module

CMS Private FEA Model		 service hybrid: 	2.6 W
Strip direct	strip direction 2 front-end hybrids		s: 2.8 W
0	-50	2 silicon strip sens after 3000fb ⁻¹ :	sors 1.2 W
-100	Component	Part	Power [W]
6.6W per module!	Service hybrid	DC-DC-converters	1.8
		opto-components	0.8
	Front-end hybrids	2 x 8 CBC chips	2.2
		2 CIC chips	0.6
	Sensors at -20°C	top	0.6
		bottom	0.6
		Sum	6.6

Thermal Runaway

• Some components (read-out chips, DC-DC converters, ...) produce a constant power

 $P_{\text{components}} = \text{const.}$

• Irradiated silicon sensors generate temperature dependent leakage current

$$P_{\text{sensor}} \propto P_0 \, \frac{T^2}{T_0^2} \exp\left[-\frac{\Delta E}{2 \, k_B} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

• Linear dependence of the cooling power $P_{\text{cooling}} \approx \frac{1}{\alpha} (T_{\text{module}} - T_{\text{coolant}})$

CO, Cooling

- cooling fluid CO₂ enters the detector in the 2-phase state (2PACL system)
 - → 12 bar at a temperature of -35°C
 - \rightarrow CO₂ is evaporated at constant temperature \rightarrow heat removal
- many advantages with respect to low-material tracking detectors
 - → cooling pipes: stainless steel, inner diameter 2.0mm, 100µm wall thickness
 - → high heat transfer coefficients in boiling CO₂ (5000 W/m²/K or higher)
- 2S modules in TEDD mounted on five cooling contacts

Outline

Thermal Finite Element Analysis

- Thermal FE analyses are made with COMSOL Multiphysics \rightarrow Heat Transfer Module
- \bullet CO $_{_2}$ temperature of -35°C is assumed in the cooling pipes
- Heat load is generated in the specific volumes
 - constant heat load for ASICs: 5.4W overall
 - temperature dependent leakage current of irradiated silicon sensors (Boltzmann distribution)
 - $P_0 = 0.6W$ at -20°C after 3000 fb⁻¹
 - maximum U_{bias} assumed is -800V $U_{\text{bias}} \cdot I(T) = U_{\text{bias}} I_0 \left(\frac{T}{T_0}\right)^2 \exp\left(-\frac{\Delta E}{2k_B}\left(\frac{1}{T} \frac{1}{T_0}\right)\right)$

Predicted Thermal Runaway

- Maximum sensor temperature is computed as a function of the CO₂ temperature
- Difference between maximum sensor temperature and CO₂ temperature is calculated
- Sensor temperature stays in safe regimes
 - for the nominal CO_2 temperature -35°C \rightarrow sensor temperature -25°C
 - for the maximum CO_2 temperature -33°C \rightarrow sensor temperature -23°C
- Good margin between thermal runaway and the maximum CO₂ temperature
 - 4K for the scenario at 4000fb^{-1} and a bias voltage of 800 V

3rd July 2017

max.rauch@cern.ch, Forum on Tracking Detector Mechanics 2017, Marseille

Thermal Interfaces

NTHAAC

Thermal Interfaces

max.rauch@cern.ch, Forum on Tracking Detector Mechanics 2017, Marseille

ΠΗΛΛ

Thermal Dummy Module

CMS

max.rauch@cern.ch, Forum on Tracking Detector Mechanics 2017, Marseille

RNTHAAC

Outline

Concept of Thermal Tests

- Requirements on a reliable thermal test setup
 - Feed the measured heating power fully into the sensor/module
 - difficult with heating resistors, heating foils, ...
 - Control the heat exchange with the ambient
- Generate thermal equilibrium between sensor and the ambient
 - FE simulations do not take into account the heat exchange with the ambient
 - 200m² of silicon in the detector \rightarrow silicon dominates the entire volume
 - silicon sensors and ambient will be at the same temperature

CMS

• Mathematical model (equation of continuity)

 $P_{\rm in} = \underbrace{\lambda_{\rm amb}(T_i)(T_i - T_{\rm amb})}_{=\rm heat \ exchange \ with \ the \ ambient} + \underbrace{\lambda_{\rm CO_2}(T_i - T_{\rm CO_2})}_{=\rm heat \ removed \ by \ {\rm CO}_2, \ linear}$

• Solution of the equation

$$T_{i} = \frac{P_{\rm in} + \lambda_{\rm amb} T_{\rm amb} + \lambda_{\rm CO_2} T_{\rm CO_2}}{\lambda_{\rm amb} + \lambda_{\rm CO_2}} \Rightarrow \frac{1}{\lambda_{\rm amb} + \lambda_{\rm CO_2}} P_{\rm in} < \frac{1}{\lambda_{\rm CO_2}} P_{\rm in}$$

Find thermal equilibrium state where

$$P_{\rm in} = \lambda_{\rm CO2}(T_i - T_{\rm CO2}) \Rightarrow T_i - T_{\rm amb} = 0 \,\mathrm{K}$$

Measurement Method

System Design

- Three positions for the 2S modules in a cooling box
- A CO₂ cooling system is available for cooling the modules: $T_{co2} = -30^{\circ}C$
- The ambient temperature of the box is controlled by a silicon oil chiller: $-30^{\circ}C \leq T_{ambient}$
- Cold dry air with the same temperature as the cooling box is injected

Module Cooling Box

Module Cooling Box

3rd July 2017

max.rauch@cern.ch, Forum on Tracking Detector Mechanics 2017, Marseille

Thermal Dummy Module

- Thermal dummy module
 - strips of the sensors not doped
 - resistance between strip side and back plane in the order of 4 Ohm
- Electrically connected with silver-based, electrically conducting glue
- Voltage sensing
- → the power is completely produced in the sensor → current through the bulk

→ power ramp up to 3W per sensor

max.rauch@cern.ch, Forum on Tracking Detector Mechanics 2017, Marseille

Measurement

Measurement Series at five different T_{amb} – Sensor Temperature

- sensor temperature differs for same power values, but different ambient temperatures
- \bullet thermal equilibrium is determined by the intersection of $\rm T_{amb}$ and $\rm T_{sensor}$
- much higher linear slope is obtained for the thermal resistance

Extraction of Thermal Resistances

- mean values of thermal equilibrium of the single thermistors is calculated
- temperature for every single spacer and insert thermistor is evaluated
 - linear interpolation between real data points
 - mean values are plotted
- thermal resistances $\alpha = \Delta T / \Delta P$ are determined by a linear fit
- comparison with FE simulated temperatures

Mean Temperature Data

Outline

Absolute Measurements

RNTHAACHEN UNIVERSITY

 ΔT_i

All Thermal Resistances

- Thermal resistances are extracted from data and compared to simulation $\,\,lpha=$

- Configuration of the FE model
 - different CO₂ heat transfer coefficients
 - different pipe glue layer thicknesses
- Absolute deviation between data and FE simulation is maximum 1.2 K/W, mostly smaller
- \bullet Average deviation per component is smaller than 0.4 K/W

Relative Deviations

 ΔT_i

- Thermal resistances are extracted from data and compared to simulation $\,\,lpha=$

- Configuration of the FE model
 - different CO₂ heat transfer coefficients
 - different pipe glue layer thicknesses
- Absolute deviation between data and FE simulation is maximum 1.2 K/W, mostly smaller
- \bullet Average deviation per component is smaller than 0.4 K/W
- \bullet On average the FE simulated data can be confirmed with data better than 10%
- Maximum about 20% deviation for certain measurement points

Torque and Thermal Contact

Heat Transfer Coefficient vs. Applied Torque

- M2 screws, 3mm long, are tested with an without washer
- heat transfer coefficient is measured
 - significant dependence on torque
- in FE simulation, 10kW/m²/K is assumed
 - → plateau of 10kW/m²/K reached with 11cNm
 - Confirmation by measurement

What have we learned?

• not a full module was tested, but a bare module

- → bare module contains all thermal interfaces relevant for cooling of the sensor
- \rightarrow in full modules, the hybrids are glued on other parts of the spacers
- critical parameter is the silicon sensor power ↔ temperature of the silicon sensor
- good understanding of the adaption to the cooling system is important
 - → prediction of thermal runaway with FE simulations
- thermal interfaces between sensor and cooling system could be measured
- $\ensuremath{\cdot}$ good compatibility with values assumed in FE simulations for all measured data
- \rightarrow reliability of FE simulations

Thermal Interfaces

Thermal Interfaces

- description and understanding of the thermal properties of silicon sensors is important for detector development in the HL-LHC detector environment
 - radiation damage, sensor power, thermal runaway, ...
- FE simulations are used to estimate the thermal performance of the detector modules
 - assumptions are made for thermal interfaces like glue layer, heat transfer coefficients, ...
- thermal measurements are necessary to confirm or adjust assumptions made in the FEA
 - many systematic uncertainties and non linearities: convection, heat input from the ambient, ...
- a setup was developed and built which allows to understand and avoid a lot of systematic uncertainties
 - control of the ambient temperature
 - controlled heat input into the silicon sensors
- linear behavior of temperature in dependence on heat load can be measured
- thermal resistances assumed in FE simulations could be confirmed with good accuracy

Thank you!

Measurement Series at six Different T_{amb}

All Thermal Resistances

Additional Material

Compact Muon Solenoid

radius 7.5m

- multipurpose detector with various detector components
- silicon strip tracker is an important part for the particle and event reconstruction

3rd July 2017

О

HV Isolation of the Sensors

• Solution is gluing $25\mu m$ thick Kapton strips between sensor and spacer

- → Kapton MT+ with 0.8 W/m/K, thickness 25µm
- $\ensuremath{\stackrel{\scriptstyle \bullet}{}}$ thermally worse contact between sensor and cooling system
- → two layers of glue
 - → Epoxy (Polytec 601-LV) with 0.2W/m/K and 20 μ m thickness
- Effective thermal through-plane-conductivity of the glue-Kapton-glue sandwich: 0.3 W/m/K

Thermal Runaway

• Irradiated silicon sensors generate temperature dependent leakage current and thus power

$$P_{\text{sensor}} \propto P_0 \, \frac{T^2}{T_0^2} \exp\left[-\frac{\Delta E}{2 \, k_B} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

• Other components (read-out chips, DC-DC converters, ...) produce a constant power

 $P_{\text{components}} = \text{const.}$

• Linear dependence of the cooling power $P_{\text{cooling}} \approx \alpha (T_{\text{module}} - T_{\text{coolant}})$

- Sensor power increases linearly with radiation damage
- highest irradiation for the 2S modules in the forward regions
- Technical Design Report value for -20°C sensor temperature:
 - → maximimum expected power is 570mW for 2S modules in the endcap

Torque and Thermal Contact

• For the five screwing junctions a heat transfer coefficient of 10 kW/m²/K is assumed

→ confirmed with measurements

- M2 screws fastened with a torque of 9cNm were used
- Question: How does the thermal contact depend on the applied torque?
 - →Answer: Measurement!

Three Measurement Series

- Serie #1:
 - M2 screws, 4mm long thread, 2 washers
- Serie #2:
 - M2 screws, 3mm long thread, 1 washer
- Serie #3:
 - M2 screws, 3mm long thread, no washer

Cooling Contacts Endcap

2S Module with "Long Inserts"

2S Module with "Short Inserts"

 two types of cooling inserts "Long" and "Short" due to the cooling pipe routing

Two versions of the module for different sensor spacings

RNNHAAC

Materials

Material	Component	Therm. conductivity [W/m/K]
Silicon	sensor, chips, opto dummy	140
Aluminum-Carbon Fiber (AICF)	sensor spacer, TB2S Ladder cooling contacts	k _{xy} = 240 ; k _z = 120
K13D2U carbon fiber	carbon fiber stiffener	$k_{xy} = 250$; $k_{z} = 0.5$
PCB-Material	service hybrid, read-out hybrid	50
Stainless steel	cooling pipes	12
Aluminum alloy	TEDD cooling inserts	130

- All glue layers are simulated with
 - the COMSOL function "Thin Layer"
 - a thickness of 20µm
 - a thermal conductivity of 0.2 W/m/K
- For the **wire bonds** an effective model is created
 - length 4.6mm, thickness 250μm
 - thermal conductivity 5 W/m/K
- The model corresponds to 1016 aluminium wire bonds
 - diameter per wire bond 12.5µm

TEDD Cooling Inserts

- Temperature difference between CO₂ and inner cooling pipe $\Delta T_{\text{pipe}} \approx \frac{P}{h \cdot A_{\text{contact}}} = \frac{1.1 \text{ W}}{5000 \text{ W/m}^2/\text{K} \pi 2.2 \text{ mm} 8 \text{ mm}} = 4.0 \text{ K}$
- Temperature gradient across cooling block: $\Delta T_{\rm block} \approx \frac{P \cdot h_z}{\lambda \cdot A_{\rm x-section}} = \frac{1.1 \, {\rm W} \cdot 10 \, {\rm mm}}{240 \, {\rm W/m/K} \cdot \pi (4 \, {\rm mm})^2} = 0.9 \, {\rm K}$
- Overall temperature difference, ΔT_{glue} is not negligible:

 $\Delta T_{\rm overall} \approx \Delta T_{\rm block} + \Delta T_{\rm pipe} + \Delta T_{\rm glue}$

- Simulated $\Delta T_{overall}$ is
 - 5.0K without glue layers
 - 7.9K with 20µm glue layers (0.2 W/m/K)

TB2S Ladder Cooling Blocks

- 2S 1.8mm modules are mounted in the TB2S Ladder structure
- Modules are mounted back-to-back onto the AICF (?) cooling contacts
- 2S 1.8mm Modules on the ladder

- cooling support for the 5th thermal contact
- cooling pipe contact length 8mm

- cooling support for the four corners of the 2S modules
- cooling pipe contact length 18mm

18mm

 heat input on top and bottom side from two modules mounted to the cooling contact

Pierre Rose

- Glue layer thicknesses of 0μm, 20μm, 65μm, and 130μm are simulated
- Thermal conductivity 0.2 W/m/K
- Thermal runaway at 1-2K lower temperatures 130µm thick glue layer

From LHC to HL-LHC

- High-luminosity LHC (HL-LHC) will operate
 - at an instantaneous luminosity of 5 · 10³⁴ cm⁻²s⁻¹ (pileup up to 200)
 - deliver an integrated luminosity of 3000fb⁻¹
- Current CMS Outer Tracker is designed to operate up to 500fb⁻¹ and pileup of 50

TB2S Ladder Cooling Contacts

3rd July 2017