Module Design and Cooling Integration for the LHCb VELO Upgrade.

Wiktor Byczyński on behalf of the VELO group

Forum on Tracking Detector Mechanics Marseille 2017

Outline

Introduction:

Current VELO and Upgrade:

- Module Design
- Cooling substrate:
 - 1. Microchannels:
 - Design
 - Attachment of the fluidic connector
 - Reliability tests of the solder joint
 - Fluidic characterization
 - Boiling stability
 - 2. Alternative plan: Ceramic substrate
 - Design
 - Constraint system
 - Fluidic characterization

Conclusion

Current VELO Detector

VELO:

- Vertex reconstruction and tracking
- 88 Si-strip sensors surrounding the interaction point
- Modules are moved away during the beam injection
- Excellent impact parameter resolution (down to 11.6 [µm])
 Excellent single hit
- resolution ~4 [μm] • ~16.5[W/module]

Performance of the LHCb Vertex Locator - arXiv:1405.7808

New VELO Detector

- The closest distance to LHC beam will be 5.1 mm (down from 8.2 mm).
- Very high $(8 \times 10^{15} n_{eq}/cm^2 \text{ for } 50 \text{ } fb^{-1})$, non-uniform radiation (~ r^{-2})
- Huge data bandwidth: up to ~15 Gbit/s for central ASICs and 2.9 Tbit/s in total.
- Sensor temperature < -20°C (CO2 @ -30°C)
- Total maximum power dissipation/module is ~30 W.
- Minimal material: cooling substrate is retracted 5 mm at the inner region.

52 Modules (26 per side)

Module design

Silicon microchannel substrate design

- 116.5	Channel	Restriction length [mm]	Main channel length [mm]
	1	40.00	230.86
	2	40.00	234.28
	3	40.00	237.70
	4	40.00	241.11
	5	40.00	244.53
	6	40.00	247.95
	7	40.00	251.36
	8	40.00	254.78
	9	40.00	258.20
	10	40.00	261.61
	11	40.00	265.03
	12	40.00	268.45
	13	40.00	271.87
	14	40.00	275.28
	15	40.00	278.70
	16	40.00	282.12
	17	40.00	285.53
	18	40.00	288.95
177	19	40.00	292.37
	ilicon thickness Iain Channel 12 Restriction 60 [µ	s - 500 [µm] 20 [µm] x 200 1m] x 60 [µm]	[µm]

VERT

LHCD

Silicon microchannel substrates

Soldering Fluidic Connector

Soldering Fluidic Connector Results

28/06/2017

X-ray result of the solder joint in small sample

Creep effect in the solder joint

"Plastic deformation of a material at very low mechanical stress levels".

- Present in many materials.
- Stress can be caused by its own weight (e.g. glaciers or glass windows).
- Can lead to failure after long time.
- Typically can be neglected only if: Temperature < T-critical

T-critical = 50% of absolute melting Temperature.

- For SnPb: T-critical = 46 [°C].
- VELO should be at 30 [°C], so expect very small creep effects.

CO2 pressure at -30 [°C] ~20 [bar]

Models exist for linear (secondary) region : e.g. "*A new creep constitutive model for eutectic solder alloy.*" Shi, Wang, Zhou, Pang, Yang , 2002. Transactions of the ASME page 84, Vol124, June 2002.

Creep effect in the solder joint - simulation

- Strain rate (=strain/sec) is function of Temperature (T) and stress (τ).
- Stress distribution is not well known: assume 2 extreme cases:
 - Case A: total force is spread uniformly over soldered surface.
 - Case B: total force is highly concentrated near the slits.

"A new creep constitutive model for eutectic solder alloy." Shi, Wang, Zhou, Pang, Yang , 2002. Transactions of the ASME page 84, Vol124, June 2002.

Creep effect test stand

Fatigue effect in the solder joint

"Fatigue is the weakening of a material caused by repeatedly applied loads."

Effect occurs when a material is subjected to repeated loading and unloading.

Current Velo – Few hundred Temperature and Pressure Cycles (300 roughly)

Fatigue test stand

Bottom heat exchanger – glycol flow

Heating/Cooling plate – 6 x 40 [W] Peltiers

Fatigue test results example

Full test

Max and Min Pressure on the Sample_S74_S75

Max and Min Temperature on the Sample_S74_S75

Two microchannels in parallel

Fluidic characterization test stand

Vacuum chamber view

Silicon substrate fluidic characterization

CO2 Temperature -25 [°C]

There should be no interplay between the two modules in the same cooling loop.

Test procedure:

- Power one microchannel (A or B) with 30[W]
- Make cyclic changes of power on the other microchannel between 0-30[W]

Since the cooling plant will be flow driven, the flow is adjusted manually to 2*0.4 [g/s] (0.4[g/s] is the nominal flow per microchannel)

If the system is stable, the module with constant power should not be affect by the power variation on the second one.

Silicon substrate – temperature probes

Microchannel Outlet temperature (MCoutput)

> 12 ASIC heat mockups

Outlet Asics

Heaters

temperature (OAH)

Inlet Asics Heaters temperature (MCinput)

2017-07-04

2017-07-04

LHCb

power (W)

Flow instabilities

Preheaters

Possible solutions

Gasket restrictors

2017-07-04

Gasket Restrictors position

Gasket Restrictor 0.150 [mm]

Total Flow ~ 0.64 [g/s]

Flow through silicon microchannel substrate

Single CO2 bubble speed – up to 1 [m/s]

Ceramic substrate design

Bending jig

Ceramic substrate fabrication

Ceramic substrate constraint system

Carbon fibre constraint system

Deflections < 100 [µm] - due to temperature variation

Ceramic Substrate fluidic characterization

Conclusion

Microchannels:

- Better Physics performance due to less material
- No CTE mismatch between sensors and substrate
- High thermal conductivity (silicon)
- No fatigue or accumulated stress effects have been observed by doing cyclic stress tests
- The orifices approach is a quite promising technique to solve the boiling instabilities.
- Soldering technique is quite advanced. The first microchannels will be soldered in a few weeks.

Ceramic substrate:

- A more conservative approach is being developed in parallel
- Small deflection due to the thermal variations (< 100 $[\mu m]$)
- Smaller fluidic resistance
- Reliability tests (pressure and temperature cycling) ongoing.

The decision will be taken this summer.

Backup Slides

2017-07-04

Microchannels fabrication

Preheating

Total Flow ~ 0.8 [g/s]

Gasket Restrictor 0.150 [mm], CO2 -25[°C]

LHCD

Cooling performance

CO2 temperature set to +15[°C] Heaters mockups simulate the power dissipation due to the 2W/ASICs + 1W/sensor The measured DT is around [7°C]