

CO₂ superheating and boiling onset measurements in the ATLAS CO₂ cooling system

Krzysztof Sliwa, Piotr Dziurdzia, Dina Giakoumi, Bart Verlaat, Lukasz Zwalinski, Nicola Suzzi

5th July 2017 Forum on tracking detector mechanics

K. Sliwa

Boiling onset problems in IBL

Boiling onset seen during bake-out

By Bart Verlaat

Boiling onset seen during normal operation

J

EHB08.watt LI S01 Power

16.69

IBL boiling Onset investigation

- We build a real size cooling mock-up of the ATLAS IBL stave pair to investigate boiling front movement phenomena
- Reproduce current situation as seen in ATLAS to understand what is ongoing
- Finding the best solutions to improve current situation in IBL
 - Optimize flow
 - Optimize manifold

EP-DT

Mock-up location in SR1

EP-DT

Setup overview

Dummy stave

Cooling lines

05/07/2017

CÉRN

The expected effect of flow reduction

Flow reduction should give less pressure drop and hence less sub cooling at the pipe inlet. Less sub cooling means less liquid heating is needed.

- Less flow means heating goes faster
- => Boiling should be easier to get started

1st results from SR1 test

Dummy pipe cooling profile Cooling SP -20 [°C], Q=25 Watt

 $1^{\mbox{st}}$ results from SR1 show the superheated liquid in the inlet tube

Flow reduction looks promising

CERN

CERN

Results from SR1 test

EP-DT

CoBra simulations

K. Sliwa

CÈRN

Test of flow reduction in IBL (Nov 15)

CERN

Detector Technologies

EP-DT

CERN

EP-DT

Boiling hysteresis

VCR gasket with calibrated orifice as solution for non boiling

FP-DT

Manifold modification

Swagelock VCR connection

1 320

SR1 mock-up manifold box

ATLAS IBL manifold box

VCR gasket with calibrated orifice allows to reduce flow in the experiment Is beneficial for boiling control Boiling should be easier to get started Low temperature in stave Easy and quick to install during EYETS Stop of cooling needed

05/07/2017

K. Sliwa

Detector Technologies Manifold modification as one of non boiling solution

 Manifold by-pass allows a higher manifold sub cooling

EP-DT

CÈRN

- Is also beneficial for plant sub cooling
 - **Better low** temperature operation
 - Does not change the IBL conditions
- Easy to install •
 - Stop of cooling needed
- Restrictions will help for better flow distribution and increased manifold sub cooling

Requirements for gaskets with calibrated orifice

- 5 [bar] of pressure drop after gaskets with calibrated orifice for diffrent Setpoints and flows:
 - SetPoint range 57-15 [bar]
 - Flow range 1.2-0.6 [g/s]
- Size of gaskets which were ordered from LENOX LASER:
 - 275 Micron
 - 250 Micron
 - 225 Micron
 - 200 Micron

250 Micron orifice results

Profile plot Dummy Stave SP0[°C] 25[W]

EP-DT

225 Micron orifice results

With 225 micron orifice

Without gasket

CERN

200 Micron orifice results

With 200 micron orifice

With 225 micron orifice

New IBL Manifold Bypass

Modification of IBL Manifold Box

Gaskets with orifice installation

New 40um filter before IBL Manifold box New By-pass in Manifold box

CERN

IBL with orifice DP-Flow characteristic

05/07/2017

EP-DT

CERN ow reduction tests of IBL cooling system? with detector connected

EP-DT

Modules temperatures with unpowered and powered detector

Unpowered detector

CÉRN

BL_TEMP5: I	BL Temps														X
LI_\$01	5.8 C	4.1 C	1.1 C	2,1 C	1.9 C	1.7 C	1.9 C	1.2 C	4.1 C	6.6 C					
LI_\$02		3.8 C	1.3 C	2.0 C	1.9 C	1.8 C	1.9 C	2,1 C	1.9 C	2,2 C	2,1 C	1.1 C	4.2 C	6.0 C	
LI_\$03	6.6 C	4.0 C	1.4 C	2,1 C	1.8 C	1.8 C	2.0 C	2,1 C	2,2 C	2,1 C	2.2 C	1.0 C	4.2 C	7.4 C	
LI_\$04	5.0 C	4.3 C	1.4 C	2.2 C	1.9 C	2.3 C	2,2 C	2.0 C	2,1 C	2,1 C	2.0 C	1.3 C	4.0 C	5.2 C	
LI_\$05		4.1 C	1.1 C	2.2 C	2,1 C	1.9 C	1.8 C	1.9 C	2,3 C	2,1 C	2,1 C	1.6 C	4.2 C		
LI_\$06	5.0 C	4.0 C	1.3 C	2.0 C	2,1 C	2.3 C	1.8 C	1.9 C	2,3 C	2,1 C	2,1 C	1.3 C	4.2 C	5.7 C	
LI_\$07	6.7 C	4.2 C	-1.2 C	2,1 C	1.9 C	1.9 C	1.9 C	1.8 C	1.9 C	2.0 C	2.2 C	1.4 C	4.1 C	6.6 C	
LI_\$08	4.8 C	4.1 C	-1.2 C	2.2 C	2.3 C	2.0 C	2,2 C	2,1 C	1.9 C	2,2 C	2.2 C	1.2 C	4.3 C	5.7 C	
LI_\$09		3.9 C	1.0 C	2.0 C	2.2 C	2.2 C	2,1 C	2,1 C	2,2 C	2.3 C	2.3 C	1.5 C	4.3 C		
LI_\$10	4.9 C	3.9 C	1.4 C	2,1 C	1.8 C	2,1 C	2,1 C	1.9 C	1.8 C	2.3 C	2,1 C	1.3 C	3.9 C	5.1 C	
LI_\$11	5.3 C	3.7 C	0.9 C	2.2 C	2,1 C	1.9 C	1.9 C	1.9 C	1.9 C	1.8 C	2.0 C	1.1 C	4.0 C	6.6 C	
LI_\$12		4.4 C	1.1 C	2.3 C	2.2 C	1.9 C	2.2 C	1.8 C	2,1 C	1.9 C	2.0 C	1.2 C	4.0 C		
LI_\$13	6.4 C	3.8 C	1.0 C	1.8 C	1.6 C	1.8 C	1.6 C	1.8 C	1.7 C	1.7 C	1.9 C	1.1 C	4.0 C	6.5 C	
LI_\$14	5.1 C	3.9 C	1.4 C	1.9 C	2.2 C	2.1 C	2.0 C	2,1 C	2,1 C	1.8 C	2.3 C	1.4 C	4.3 C	4.8 C	

Temperatures inside staves are more homoginues in both cases !!!

Powered detector	S IBL_TEMPS: IBL Temps														×	
	LI_\$01	6.6 C	7.2 C	1.2 C	5.4 C	6.3 C	5.4 C	5.4 C	5.3 C	5.1 C	5.3 C	5.2 C	1.3 C	7.2 C	7.6 C	
	LI_\$02		7.2 C	1.5 C	5.5 C	4.8 C	5.1 C	5.1 C	5.4 C	5.1 C	5.4 C	5.2 C	1.1 C	7.5 C	7.2 C	
The lower	LI_\$03	7.6 C	7.2 C	1.5 C	5.9 C	5.1 C	5.4 C	5.1 C	5.2 C	5.8 C	5.4 C	5.6 C	1.2 C	7.6 C	8.6 C	
	LI_\$04	6.3 C	7.9 C	1.6 C	7.9 C	5.6 C	6.0 C	6.0 C	6.8 C	5.5 C	5.4 C	5.0 C	1.4 C	7,4 C	6.3 C	
temperatures due to	LI_\$05		7.5 C	1.1 C	5.6 C	5.3 C	5.2 C	6.2 C	5.1 C	5.5 C	5.7 C	5.7 C	1.8 C	7.7 C		
lemperatures due to	LI_\$06	6.2 C	7.5 C	1.5 C	5.5 C	5.4 C	5.7 C	5.2 C	5.6 C	5.4 C	5.3 C	5.4 C	1.4 C	7.6 C	6.8 C	
ower prossure	LI_\$07	7.9 C	7.8 C	1.4 C	5.6 C	5.3 C	5.8 C	5.1 C	5.0 C	5.3 C	5.6 C	8.5 C	1.7 C	7.7 C	7.8 C	
ower pressure	LI_\$08	5.9 C	7.5 C	1.3 C	5.6 C	5.8 C	5.5 C	5.8 C	5.9 C	5.1 C	5.5 C	6.2 C	1.3 C	7.8 C	6.9 C	
reduction	LI_\$09		7.2 C	1.0 C	5.4 C	5.5 C	5.5 C	5.5 C	6.0 C	5.5 C	5.8 C	5.9 C	1.7 C	7.6 C		
Euuction.	LI_\$10	5.9 C	7.1 C	1.5 C	6.5 C	6.9 C	6.1 C	5.8 C	6.4 C	6.0 C	6.3 C	5.7 C	1.5 C	7.1 C	6.1 C	
This cooling line	LI_\$11	590	6.7 C	1.0 C	5.5 C	6.0 C	5.6 C	5.3 C	5.1 C	5.4 C	5.1 C	5.4 C	1.2 C	7.1 C	7.5 C	
	LI_\$12		7.4	1.2 C	6.2 C		3.5 C	5.2 C	4.9 C	3.2 6		5.1 C	1.3 C	6.9 C		
had to be checked	LI_\$13	7.2 C	6.6 C	1.0 C	4.2 C	4.0 C	4.2 C	4.1 C	4.4 C	4.2 C	4.2 C	4.5 C	1.2 C	6.8 C	7.0 C	
	LI_514	5.7 C	6.4 C	1.5 C	5.0 C		54 C	5.4 C	5.6 C	516		5.4 C	1.5 C	7.0 C	5.4 C	

Modules temperatures after intervention in April

After the change of the orrifice the modules temperature looks ok

🛟 IBL_TEMPS: IBL Temps

CÉRN

_ 🗆 ×

LI_\$01	-6.9 C	-3.8 C	-17.6 C	-	13.2 C	-11.9 (-13.0 C	-13.2 C	-13,5 C	-13.6 C	-13,3 C	-13,1 C	-17.2 C	-3.8 C	-6.1 C
LI_\$02		-3.8 C	-16.9 C	-	12.3 C	-13,1 (0 -12.8 C	-12.8 C	-12,7 C	-12.7 C	-12,4 C	-12.5 C	-17.8 C	-3.5 C	-5.3 C
LI_\$03	-4.8 C	-4.1 C	-17.1 C	-	12.7 C	-13.5 (0 -13,4 C	-13.6 C	-13,4 C	-12.8 C	-13.0 C	-12.9 C	-17.6 C	-3.5 C	-4.5 C
LI_\$04	-6.8 C	-2,8 C	-17.0 C	-	10.1 C	-12.9 (0 -12,2 C	-12,5 C	-11,4 C	-13.2 C	-13,4 C	-13.5 C	-17.3 C	-3.8 C	-7.1 C
LI_\$05		-3,5 C	-17.7 C	-	13.2 C	-13.6 (0 -13,5 C	-11.8 C	-13.6 C	-12.9 C	-13.5 C	-13.2 C	-16.7 C	-3.6 C	
LI_\$06	-7.0 C	-3.7 C	-17.0 C	-	12.5 C	-12.5 (C -12,1 C	-12.5 C	-12,1 C	-12.5 C	-12.5 C	-12,1 C	-17.6 C	-3.5 C	-6.3 C
LI_\$07	-4.7 C	-3.7 C	-17.2 C	-	13.1 C	-13.6 (C -13,4 C	-13.8 C	-13,9 C	-13,7 C	-13.3 C	-10,4 C	-16.3 C	-3,3 C	-5.6 C
LI_\$08	-7.8 C	-3,3 C	-17.6 C	-	13.2 C	-13.0 (0 -13.2 C	-12.9 C	-13,3 C	-13.6 C	-13.3 C	-12.6 C	-17.6 C	-3,5 C	-6.3 C
LI_S09		-3,5 C	-17.9 C	-	13.3 C	-13.0 (C -12,8 C	-12.8 C	-12,2 C	-13.0 C	-12.9 C	-12.8 C	-16.6 C	-3,3 C	
LI_\$10	-7.8 C	-3,9 C	-17.1 C	-	12.3 C	-11.4 (0 -12,6 C	-13.0 C	-11.9 C	-12.5 C	-12,1 C	-12.9 C	-16.8 C	-4.0 C	-7.5 C
LI_\$11	-8,3 C	-4.1 C	-18.0 C	-	12.3 C	-11.5 (C -12.0 C	-12,4 C	-12.7 C	-12.3 C	-12.8 C	-12.5 C	-17.5 C	-3.7 C	-6.1 C
LI_\$12		-3,3 C	-17.6 C	-	12.0 C	-12.4 (0 -12.9 C	-13.3 C	-13.8 C	-13.5 C	-13.7 C	-13.3 C	-17.5 C	-3.8 C	
LI_\$13	-5.0 C	-3.9 C	-17.7 C	-	12.9 C	-13.0 (C -12.8 C	-12.8 C	-12.5 C	-12.8 C	-12,7 C	-12.6 C	-17.2 C	-3,8 C	-6.1 C
LI_\$14	-7.0 C	-3,5 C	-16.9 C	-	12.7 C	-11.7 (C -12,4 C	-12,4 C	-12,1 C	-12.7 C	-12.7 C	-12.2 C	-17.2 C	-2,5 C	-8.3 C

FP-DT

Conclusions

- Overall temperature in stave went down
- Better CO₂ flow distibution for each stave
- Temperature of modules inside stave looks like more homogeneous
- Less superheated liquid inside cooling pipes
- Thanks to new by-pass more sub cooling inside the manifold
- Upgrades did not change the IBL condition

Need of CO₂ boiling research

- Under some circumstances which might be material related there are deviations in the boiling onset and hence heat transfer which can cause larger and irregular temperature gradients than expected.
 - Differences observed between stainless steel prototypes and final titanium cooling pipes.
 - ITk cooling is providing preheating with a heat exchanger to enhance boiling (Warm nose heat exchanger)

• Results from SR1 and ATLAS shown that this proces requires better understanding. We encourage detector designers to seriously investigate the boiling onset behaviour of their cooling pipes.

Thank you for your attention!

krzysztof.sliw@gmail.com

Backup slides

HW & SW issues and solutions

Design:

• Feb-Mar

Building:

• Apr-Jun

Plant tuning

• Jul-Aug

We experienced many problems and solved them:

- Manifold box adjustment 4 m above floor
- Temperature sensors installation
- Exchanging mismatching Lapp connectors
- Cleaning low vacuum gauge sensor
- Repairing leaking titanium cooling pipes
- Debuging LabVIEW software
- Fixing broken spare flex line*
- Repairing misbehaving CO₂ plant

Fixing broken spare flex line

Repair by gluing

*The repair method works very well and can be applied in ATLAS in case a flex line gets damaged

EP-DT

Detector Technologies

SR1 CO₂ plant issues

CO₂ plant behavior

EP-DT

CÉRN

Flow increase results

EP-DT

CERN

Calculated orifice sizes according to our requirements

DP-Flow characteristic for -20[°C]

K. Sliwa

EP-DT

Orifice characteristic

DP-Flow characteristic for -20[°C]

New IBL Manifold Bypass

CERN

Flow reduction tests of IBL cooling system with detector connected

CÉRN

What is next?

