$HS\chi \; \mathop{\rm model}_{\rm A \; generic \; tool \; for \; h+E_{\rm T}^{\rm miss} \; {\rm searches}}$

Stefan von Buddenbrock

LHC DMWG Meeting 15 December 2016

Stefan von Buddenbrock stef.von.b@cern.ch

LHC DMWG Meeting – 15 December 2016

Introduction

Introducing H, S and χ

The theory behind the model is found in EPJC76 (2016) no.10, 580

- The model introduces several new particles
 - H (the SM Higgs is h!): a heavy scalar with mass between 250 GeV $(2m_h)$ and 350 GeV $(2m_t)$. It may be the heavy CP even component of a 2HDM.
 - S: a Higgs-like scalar with mass between 125 GeV (m_h) and at most 225 GeV $(m_H m_h)$. This could have theoretical origins in a Higgs singlet.
 - $\circ~\chi$: a scalar dark matter (DM) candidate, which has a mass around $m_h/2$, and interacts only with S.
- The simplified model presented here could be embedded into more precise theories, such as Higgs portal models, extended 2HDMs, etc.

Phenomenology

 ${\bf Producing} \ H \ {\bf and} \ S$

• H is produced dominantly through gluon fusion (ggF)

- ${\cal S}$ couples more weakly to SM particles, so direct production is suppressed
- S is dominantly produced through $H \to SS, Sh$
 - The admixture is controlled by the free parameter:

$$a_1 = \frac{\mathsf{BR}(H \to Sh)}{\mathsf{BR}(H \to SS)}$$

Plausibility

Is this within current limits?

• From EPJC76 (2016) no.10, 580, using the most liberal choice of $\sigma \times {\rm BR}$

Channel/region (GeV)	Prediction (fb)	Experimental limit (fb)
Monojet with $gg \rightarrow H \rightarrow SS$	$4 \rightarrow 4\chi$ at $\sqrt{s} = 8 \text{ TeV}$	
$E_{\rm T}^{\rm miss} > 250$	15.1 ± 0.18	229
>300	8.90 ± 0.063	98.5
>350	5.42 ± 0.023	48.8
>400	3.42 ± 0.0093	20.2
>450	2.24 ± 0.0040	7.82
>500	1.48 ± 0.0017	6.09
>550	1.00 ± 0.00080	7.21
$b\bar{b} + E_{\rm T}^{\rm miss}$ with $gg \to H \to S$	$bh \to b\bar{b}\chi\chi$ at $\sqrt{s} = 13 \text{ TeV}$	
Signal region	0.10 ± 0.03	1.38
$\gamma\gamma + E_{\mathrm{T}}^{\mathrm{miss}}$ with $gg \to H \to S$	$Sh \rightarrow \gamma \gamma \chi \chi$ at $\sqrt{s} = 13 \text{ TeV}$	
High $S_{E_{\mathrm{T}}^{\mathrm{mins}}}$, high $p_{\mathrm{T}}^{\gamma\gamma}$	0.265 ± 0.009	12.1
$\operatorname{High} S_{E_{\mathrm{T}}^{\mathrm{mins}}}, \operatorname{low} p_{\mathrm{T}}^{\prime\prime\prime}$	0.675 ± 0.014	12.1
Intermediate $S_{E_T^{miss}}$	3.17 ± 0.03	12.1
Rest	2.80 ± 0.03	12.1

Interpretation

Using the simplified model

Scanning the parameter space (only four relevant parameters):

- m_H : varied between $2m_h$ and $2m_t$
- m_S : varied between 130 GeV and 200 GeV
 - $\circ~$ Since S is the portal to the DM interactions, m_{χ} is irrelevant for this search
- BR $(S \rightarrow \chi \chi)$: varied between 0 and 1
 - $\circ~$ One could argue that m_{χ} is related to this
- β_g : "signal strength", varies the $gg \to H$ cross section.
 - $\circ 0 = no signal,$
 - $\circ \ \ \mathbf{I} = \mathbf{SM}\text{-like } gg \rightarrow H \text{ cross section}$

For more generic searches, the mass bounds can be relaxed

Event generation

How can we simulate the processes?

- Since we only add scalars \implies Pythia 8 can be used easily
 - I have a large variety of Pythia cards for generating various processes
- A UFO model does exist (not yet validated)
 - However, the simplified model approach is more useful when using Pythia

If there is any interest in generating/validating, please email me!

Kinematics

 $E_{\rm T}^{\rm miss}$ at various parameter points

Selection of parameter points can produce $E_{\rm T}^{\rm miss}$ in various regions of the phase space.

Search prospects

Higgs + $E_{\rm T}^{\rm miss}$ – what has been done so far?

This model can be used to describe Higgs + E_{T}^{miss} processes:

- The effective vertex (left) has already been studied under $h \to \gamma \gamma$ in ATLAS (ICHEP Note)
- BR $(S \to \chi \chi)$ is a free parameter of the theory, so $\gamma \gamma + E_{\rm T}^{\rm miss}$ has set limits on it

Search prospects

Using the 2HDM embedding - what searches could be done?

Case study: $A \rightarrow ZH + E_{\rm T}^{\rm miss}$

- This was studied in the theory paper (EPJC76 (2016) no.10, 580)
- The model can motivate a large $A \to ZH$ (not $h) \ {\rm BR}$
- Thereafter, $H \to Sh$, $S \to \chi \chi$

Z

Lange Contraction

A

Conclusions

- A model for generic $h + E_{\rm T}^{\rm miss}$ searches has been presented:
- Minimally, three new particles are introduced, H and S , both Higgs-like, and χ
- S is produced through the decay of H
 - $\circ \ H \to SS$
 - $\circ \ H \to Sh$
- A 2HDM could also be introduced
 - This expands the possible search channels
 - $\circ \ A \to ZH$ has been used as a case study
 - $\circ~$ A list of final states of the $HS\chi$ model using a 2HDM can be found in Table 2 of EPJC76 (2016) no.10, 580

Thank you

Backup

Stefan von Buddenbrock stef.von.b@cern.ch

LHC DMWG Meeting - 15 December 2016

12

Search prospects

Branching ratios of ${\cal S}$

• What channels can we study for potential S production?

