Self-consistent DM Simplified Models with an s-channel scalar mediator

(2HDMs as UV completions to dark matter interactions)

Nicole Bell The University of Melbourne

with Giorgio Busoni & Isaac Sanderson

arXiv:1612.03475

Outline

- o Introduction
- Mixing of a scalar singlet with the SM Higgs (H+S) A two mediator scenario motivated by gauge invariance
- Mixing of a scalar singlet with an additional Higgs (2HDM+S)
 Scalar spectrum and Yukawa structure
- Interesting parameter space and constraints

o Conclusions

Basic scalar-mediator interaction

- This Simplified Model is not $SU(2)_L$ gauge invariant
- We should generalise to a minimal self-consistent model (especially if we consider complementary signals from different channels).
- Need to mix the singlet scalar with SU(2)_L doublet scalar(s)
 → will have minimum of two scalar mediators
 → important phenomenology of this multi-mediator scenario
 - not captured by single-mediator version.

Singlet scalar + SM Higgs (H+S)

$$V = V_{Higgs,SM} - \frac{1}{2}M_{SS}^2S^2 + \frac{1}{4!}\lambda_SS^4 + \frac{1}{2}\lambda_{HS}\Phi^{\dagger}\Phi S^2$$

After symmetry breaking, $\langle \phi \rangle = v$, $\langle S \rangle = w$, we have mixing of the mass eigenstate scalars, h and s, with mixing angle

$$\tan\epsilon \simeq \frac{\lambda_{HS} v w}{m_h^2 - m_s^2}$$

Both *h* and *s*, mediate $q - \chi$ interactions:

$$L_{int,s-h} = -(h\cos\epsilon - s\sin\epsilon) \sum_{f} \frac{m_i}{v} \bar{f_i} f_i - y_{DM}(s\cos\epsilon + h\sin\epsilon) \bar{\chi}\chi$$

Note: universal proportionality constant for fermion -s interactions: sin ϵ

If $m_{\chi} < m_h/2$, the mixing angle is tightly constrained by Higgs invisible width:

$$\Gamma(h \to \bar{\chi}\chi) = \frac{y_{\chi}^2 \sin^2 \epsilon}{8\pi} M_h \left(1 - \frac{4m_{\chi}^2}{m_h^2}\right)^{3/2}$$

e.g.
$$\sin \epsilon < 0.06$$
 for $y_{\chi} = 1$, $m_{\chi} \ll m_h/2$

In addition to the Yukawa terms, other terms 1st order in sin ϵ include:

$$L_{int,sWZ} = -\sin\epsilon \left(2\frac{M_W^2}{v}W_{\mu}^+W^{-\mu} + \frac{M_Z^2}{v}Z_{\mu}Z^{\mu}\right)s$$

Precision electroweak constraints imply:

$$|\sin \epsilon| < 0.4$$
 if $m_s \sim 200$ GeV
 $|\sin \epsilon| < 0.2$ if $m_s \sim 1000$ GeV

Mono-jets + ET_{miss}

All diagrams contribute to jets/monojets+ ET_{miss} Diagrams in lower row also contribute to $t\bar{t} + ET_{miss}$ VBF diagram occurs in H+S, 2HDM+S (but not in 1-mediator model)

Complementary processes

Mono-jets sensitivity

Can we rescale the limits on the single-mediator Simplified Model? \rightarrow In general <u>no</u>, because:

- neglects interference of h and s
- neglects vector boson fusion operators

Nonetheless, if we make a naïve rescaling:

$$\frac{\sigma_{S+H}}{\sigma_S} \sim \frac{\sin^2 \epsilon}{g_q^2} \le \frac{0.16}{g_q^2}$$

- Current CMS sensitivity is close to $g_q = 1$ (for low mass mediators)
- H+S model harder to exclude due to mixing angle suppression.
- 2HDM+S version will not suffer this suppression (can instead be <u>enhanced</u> by $\tan \beta$ (or other factors that scale the Yukawas)

Direct detection bounds on H+S model

Scalar mediator interactions result in spin-independent (SI) DM-nucleon scattering

 \rightarrow strongly constrained

$$---- m_s = 1 \text{ TeV}$$

---- $m_s = 150 \text{ GeV}$

Red – excluded by Higgs invisible width Blue – excluded by EW constraints

Direct detection bounds on H+S model

Destructive interference of hand s occurs when $m_s \sim m_h$ \rightarrow Results in a blind spot for direct detection

$$----\sin\epsilon = 0.4$$
$$----\sin\epsilon = 0.03$$

Red – For $\sin \epsilon = 0.4$, this region excluded by Higgs invisible width. No corresponding bound for $\sin \epsilon = 0.03$.

Singlet + two Higgs doublets (2HDM+S)

Introduce an additional Higgs doublet

- We will want one doublet to be SM-like (alignment limit)
- Mix the additional doublet with a singlet to mediate DM interactions

Use the well-established framework of 2HDMs, and expand to include the additional scalar singlet

$$\Phi_1 = \begin{pmatrix} \Phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \Phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}$$

$$\tan \beta = \frac{v_2}{v_1} \qquad v_1^2 + v_2^2 = v^2$$

Plus the singlet scalar: $S = v_s + S'$

Scalar mixing in 2HDM+S

Work in the Higgs basis where only one doublet obtains a vev:

$$\Phi_h = \cos\beta\Phi_1 + \sin\beta\Phi_2 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(\nu + h + iG^0) \end{pmatrix}$$
$$\Phi_H = -\sin\beta\Phi_1 + \cos\beta\Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H + iA) \end{pmatrix}$$

In general, all 3 scalars will mix after symmetry breaking:

$$M = \begin{pmatrix} M_{hh} & m_{hH} & m_{hs} \\ m_{hH} & m_{HH} & m_{Hs} \\ m_{hs} & m_{Hs} & m_{ss} \end{pmatrix}$$

Note that a pseudoscalar analogue of this setup has only 2x2 mixing, since only one physical pseudoscalar in a 2HDM.

$$M = \begin{pmatrix} M_{hh} & m_{hH} & m_{hs} \\ m_{hH} & m_{HH} & m_{Hs} \\ m_{hs} & m_{Hs} & m_{ss} \end{pmatrix}$$

Enforce generalised "alignment limit", in which h is SM-like, by requiring $\Rightarrow M_{hH} = 0, \quad M_{hs} = 0$

(could relax this assumption somewhat and look at 3-state mixing...)

Reduces to 2x2 mixing of $\{H, S\}$, with mass eigenstates $\{S_1, S_2\}$:

$$H = \cos \theta S_1 - \sin \theta S_2$$

$$s = \sin \theta S_1 + \cos \theta S_2$$

2HDM+S Lagrangian

$$L_{int} = -y_{\chi}(\sin\theta S_1 + \cos\theta S_2)\bar{\chi}\chi$$

$$-\sum_{f=u,d,l}\epsilon_f\sum_{i\in f}\frac{y_i}{\sqrt{2}}(\cos\theta\,S_1+\sin\theta S_2)\bar{f_i}f_i$$

+ charged scalar terms + scalar mixing terms +

where the parameters ϵ_f depend on choice of Yukawa structure

Coupling of DM and SM fermions to S_1 , S_2 of similar form to H+S model, but

- not subject to Higgs invisible width constraints on the mixing angle
- interference effects possible for m_{S_1} , m_{S_2} very different to m_h^{SM} =125 GeV
- Significantly more freedom in Yukawa couplings

Price we pay is introduction of flavour changing interactions.

2HDM+S Yukawa structure

$$L_{Yukawa} = -\sum_{n=h,H} Y^U_{n,ij} \overline{Q}^i_L u^j_R \widetilde{\Phi}_n + Y^D_{n,ij} \overline{Q}^i_L d^j_R \Phi_n + Y^L_{n,ij} \overline{L}^i_L l^j_R \Phi_n + h.c.$$

Type I, II, X and Y, with Natural Flavour Conservation (NFC):

- symmetry which permits each fermion type (u,d,l) to couple to only one of the doublets Φ_1 , Φ_2 .
- FCNCs suppressed, but still arise from charged scalars in loops

Model	ϵ_d	ϵ_u	ϵ_l
Туре І	cotβ	cotβ	cotβ
Type II	$-\tan\beta$	$\cot \beta$	$-\tan\beta$
X (lepton specific)	cotβ	cotβ	$-\tan\beta$
Y (flipped)	$-\tan\beta$	cotβ	cotβ

Couplings of S_1 and S_2 to fermions proportional to ϵ_f .

e.g. Suppress or enhance couplings to top-quarks with choice of $\tan \beta$

Type III models, with Minimal Flavour Violation (MFV):

- Type III model have no symmetry to prevent coupling to both doublets and hence potential FCNC issues
- Important to implement MFV

MFV, with no tree level FCNCs, can be achieved by requiring that the Yukawa couplings to the two doublets are *simultaneously diagonalizable:*

Couplings to h

Couplings to H

$$\begin{aligned} Y_h^U &= V_{CKM}^{\dagger} D(y_u, y_c, y_t) & Y_H^U &= V_{CKM}^{\dagger} D(\lambda_u, \lambda_c, \lambda_t) \\ Y_h^D &= D(y_d, y_s, y_b) & Y_H^D &= D(\lambda_d, \lambda_s, \lambda_b) \\ Y_h^L &= D(y_e, y_\mu, y_\tau) & Y_H^L &= D(\lambda_e, \lambda_\mu, \lambda_\tau) \end{aligned}$$

Yukawa Aligned model (Type III):

$$Y_h^U \equiv Y_{SM}^U$$

 $Y_H^U = \tan \gamma_u Y_{SM}^U$ and similarly for d, l
where $\{\gamma_u, \gamma_d, \gamma_l\}$ are arbitrary

- Satisfies the simultaneously diagonalizable requirement for MFV.
- Allows coupling for the u,d,l sectors to be scaled independently
- Flavour constraints well studied (e.g. 1511.05066).
- $\tan \gamma_{u,l} < O(\text{few})$; $\tan \gamma_d$ can be much larger (e.g. $\tan \gamma_d > O(100)$ if $\gamma_{u,d} \sim 0$)

2-generation model (Type III):

$Y_H^U = A V_{CKM}^{\dagger} P_{12}$	$Y_h^U = y_t V_{CKM}^{\dagger} P_3 + O(\frac{m_c}{m_t})$
$Y_H^D = BP_{12}$	$Y_h^D = y_b P_3 + O(\frac{m_s}{m_t})$
$P_{12} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$	$P_3 = \begin{pmatrix} 0 & & \\ & 0 & \\ & & 1 \end{pmatrix}$

SM-like Higgs couples 3rd gen

New doublet couples to 1st,2nd gen with equal strength

Example parameters: B<0.01, A<0.1

Type I, $tan \beta = 1$ (the "plain vanilla" case)

As in H+S model, interference where the two scalar mediators are approx degenerate.

When one of the scalars is >500 GeV, the other one can be arbitrarily heavy (i.e. cross section small enough even without destructive interference)

Type II, $tan \beta = 1, 10$

For type II, $\tan \beta \simeq 1$ implies u and d quarks have opposite sign contributions of similar size – which is an additional interference effect.

For large $\tan\beta$, d-quarks dominate

Yukawa Aligned

Again, interference of *u* and *d* quarks when their Yukawas are scaled by factors of similar size but opposite sign.

(blue dashed vs blue solid)

2-generation model

- No coupling to t,b.
- Couplings to light quarks significantly enhanced.
- Interference effects again relevant

Summary

- s-channel scalar mediator *must* be analysed in *multi-mediator* framework
- SM Higgs +singlet (H+S)
 - > All couplings proportional to SM Yukawa couplings
 - Strong Higgs and precision EW constraints
 - Largely excluded by direct detection unless H & S degenerate

(of course, usual caveats about comparing DD and collider apply)

- Additional Higgs +singlet (2HDM+S)
 - Sector or even flavour dependent couplings
 - Higgs alignment limit allows more freedom for the two mixed scalars, while allowing SM Higgs to decouple
 - Direct detection suppressed by two interference effects
 - interference of scalar mediators
 - interference of opposite sign u and d quark contributions
 - \rightarrow important for colliders to probe parameters where DD is blind

Outlook

- Any model beyond the minimal H+S will involve a non-minimal Higgs sector
 - \rightarrow new charged scalars
 - →flavour constraints

(inevitable consequence of scalar s-channel + SU(2) invariance)

- Relative importance of different collider channels will strongly depend on Yukawa structure assumed. In 2HDM+S model, signals can be enhanced/suppressed by tan β and other Yukawa-sector scaling factors, e.g:
 - Suppress ttbar signals in Type-II model with $1/\tan\beta$
 - Suppress dilepton resonances in Type-Y with $1/\tan\beta$, or eliminate dilepton signals altogether in a leptophobic Yukawa-aligned case

 \rightarrow Important to do searches in all complementary channels