Pseudoscalar Portal Dark Matter

I

Stefania Gori University of Cincinnati

LHC Dark Matter WG meeting December 15th 2016

Motivations & goal for the pseudoscalar portal

Question we want to ask in this talk:

How to **fully explore** thermal DM models with DM annihilating through the pseudoscalar portal?

Goal

$$
\frac{g_{\chi}A\bar{\chi}i\gamma^{5}\chi+g_{f}A\bar{f}i\gamma^{5}f}{\sinh\gamma_{\text{max}}\lambda}\frac{g_{\chi}g_{f}}{m_{A}^{2}}(\bar{\chi}\gamma^{5}\chi)(\bar{f}\gamma^{5}f)
$$

Why is the pseudoscalar portal interesting?

The least constrained portal

۱

- s-wave annihilation (vs. p-wave for scalar mediators)
- No spin independent scattering cross section (only spin dependent)

* Open parameter space for a quite light DM candidate, satisfying the galactic center excess

Based on A.Berlin, SG, T.Lin, L.T.Wang, 1502.06000

۱ Motivations & goal for the pseudoscalar portal

Question we want to ask in this talk:

How to **fully explore** thermal DM models with DM annihilating through the pseudoscalar portal?

$$
g_{\chi} A \bar{\chi} i \gamma^5 \chi + g_f A \bar{f} i \gamma^5 f \underbrace{\longrightarrow}_{\text{if heavy A}} \frac{g_{\chi} g_f}{m_A^2} (\bar{\chi} \gamma^5 \chi) (\bar{f} \gamma^5 f)
$$

***** The least constrained portal

Open parameter space for a quite light DM candidate, satisfying the galactic center excess

Benchmark models for pseudoscalar portal

What UV completion can we write down?

- *** Based on minimality: 2HDM**
- 1. Scalar DM:

۱

- ◆ DM part of the 2HDM (if one doublet is inert)
- ◆ DM is an additional singlet scalar

2. Fermion DM: A.Berlin, SG, T.Lin, L.T.Wang, 1502.06000 $\mathcal{L}_{\rm DM} \supset -\frac{1}{2} M_S S^2 - M_D D_1 D_2 - y_1 S D_1 \Phi_1 - y_2 S \Phi_2^{\dagger} D_2 + \text{h.c.}$
(2 neutral states, 2 charged states) + type II 2HDM Model **Name** $\boxed{\Phi_1 = \Phi_d, \, \Phi_2 = \Phi_u}$ du Equivalent models: $y_1^2 \leftrightarrow y_2^2$ $\overline{\Phi_1} = \overline{\Phi_u}, \overline{\Phi_2} = \overline{\Phi_d}$ $\boldsymbol{u}\boldsymbol{d}$ $\Phi_1 = \Phi_d, \, \Phi_2 = \Phi_d$ $\boldsymbol{d}\boldsymbol{d}$ $\boxed{\Phi_1 = \Phi_u, \, \Phi_2 = \Phi_u}$ Studied in details in eg. \boldsymbol{uu} Cohen et al. 1109.2604; Cheung et al. 1311.5896

2 Higgs doublets

Benchmark models for pseudoscalar portal

What UV completion can we write down?

- *** Based on minimality: 2HDM**
- 1. Scalar DM:

۱

- ◆ DM part of the 2HDM (if one doublet is inert)
- ◆ DM is an additional singlet scalar

Counting the free parameters of these benchmark models:

 $m_H, m_A, m_{H^{\pm}}, M_D, M_S, y, \tan \beta, \tan \theta \qquad (y_1 = y \cos \theta, y_2 = y \sin \theta)$ For simplicity, we assume to be in the alignment limit: $α = β - π/2$

Comparison with SUSY models

* The du model is a generalization of the MSSM, with Higgsino-Bino DM $\mathcal{L}_{\rm DM} \supset -\frac{1}{2}M_S S^2 - M_D D_1 D_2 - y \cos \theta S D_1 \Phi_u - y \sin \theta S \Phi_d^{\dagger} D_2 + \text{h.c.}$ D_1 , D_2 = Higgsinos, S = Bino y = g', tanθ = -1, M_s = M₁, M_D = μ

۱

Comparison with SUSY models

* The du model is a generalization of the MSSM, with Higgsino-Bino DM $\mathcal{L}_{\rm DM} \supset -\frac{1}{2}M_S S^2 - M_D D_1 D_2 - y \cos \theta S D_1 \Phi_u - y \sin \theta S \Phi_d^{\dagger} D_2 + \text{h.c.}$ D_1 , D_2 = Higgsinos, S = Bino y = g', tanθ = -1, M_s = M₁, M_D = μ

*** More freedom in the Higgs spectrum**

۱

$$
m_{H^{\pm}}^2 - m_A^2 = \frac{v^2}{2} (\lambda_5 - \lambda_4),
$$

\n
$$
m_H^2 - m_A^2 \simeq \lambda_5 v^2
$$

\n
$$
\text{large } m_A, \tan\beta
$$

\n
$$
\sum_{\substack{0.00 \text{ odd} \\ \text{odd}}} \begin{cases} \lambda_4^{\text{MSSM}} = -\frac{g^2}{2} \sim -0.21, & \lambda_5^{\text{MSSM}} = 0\\ m_{H^{\pm}}^2 - m_A^2 = m_W^2, & m_Z^2 \sin^2(2\beta) \end{cases}
$$

Some constraints from EW precision measurements.

In the alignment limit: $\alpha = \beta - \pi/2$ $\alpha T = \frac{g^2}{64\pi m_{\tau\tau}^2} \left[{\cal F}(m_{H^\pm}^2,m_A^2) \right. +$ $+ \mathcal{F}(m_{H+}^2, m_{H}^2) - \mathcal{F}(m_{A}^2, m_{H}^2)]$

Nevertheless, it is easy to obtain sizable m_д- m_н,m_{н±} splittings Example: $m_{\mu} = m_{\mu_{\pm}} \rightarrow T = 0$

Direct and indirect DM detection

۱

Direct and indirect DM detection

۱

tanβ | Direct detection

tanθ

Spin independent: h, H mediated

$$
\sigma_0 \propto \mu_{\chi,h}^2 \left(-\frac{\lambda_{\chi h}}{m_h^2} + \frac{\lambda_{\chi H} q_{\beta H}}{m_H^2} \right)
$$

$$
q_{u(d)H} = \frac{1}{\tan \beta} \left(-\tan \beta \right)
$$

Several blind spots arise for **tanθ < 0**

Eg. in the dd model, both contributions are 0 for $m_x + M_D \sin(2\theta) = 0$

Spin dependent: Z (and A) mediated

Additional probes (scalar sector)

Higgs (and Z) invisible decays. Constraints from the LHC and from LEP $\Gamma(Z \to \chi \chi) \lesssim 2 \text{ MeV}$

۱

Direct (LHC) and indirect (flavor experiments) searches for new scalars

Flavor constraints mainly for the charged Higgs boson eg. from $b \rightarrow sy$ Misiak, $m_{H^\pm} \gtrsim 480 \; \text{GeV}$ 1503.01789

Possible plane to be used for the interpretation of the LHC searches

۱ Additional probes (EW-ino sector, 1)

LHC electro-weakino searches

- These bounds are for Wino-like NLSPs

In our case (~Higgsino-like) the bound on the mass will be weaker

- Also, in our model, new decay modes can be open (eg. $X_2^{} \!\!\rightarrow$ A $X_1^{}$) and this will affect the bound
- No bound beyond LEP for DM with masses above ~150 GeV

For the re-interpretation, we can provide the MadGraph model for our scenario

Available

۱ Additional probes (EW-ino sector, 2)

Mono-X searches

Mono-b and mono-top searches are particularly interesting

See eg. Cheung et al, 1207. 4930 Lin, Kolb, Wang, 1303.6638

Example:

Still relatively weak limits, but they will get there...

ىر
nr In our model, (small) changes in the re-interpretation since additional Z-mediated contributions

For the re-interpretation, we can provide the MadGraph model for our scenario

Open parameter space (~heavy DM)

۱

du model du model de la contrattura de

Open parameter space (~light DM)

۱

Also the galactic center excess can be fitted

14/16 S.Gori

Future tests of the model

Future stages of

۱

- direct detection experiments (Xenon1T, LZ, …)
- LHC EW-ino searches

will probe additional regions of parameter space (especially in the light DM case)

Mono-heavy quark searches will start to be sensitive (interesting new interpretation in terms of our model)

New interesting searches could be performed at the LHC:

- new EW-ino searches: eg. pp → $X^{\pm}X^{ }_2$ → (WA) $X^{ }_1X^{ }_1$, A → bb, ττ , ...
- new heavy Higgs searches: eg. $H^{\pm} \rightarrow X^{\pm} X_{1}$, $H \rightarrow X_{1} X_{2}$, ...

Work in progress with Zhen Liu and Bibhushan Shakya

300fb-1

Summary & Conclusions

۱

- Very interesting DM benchmark models arising from 2HDMs
- Requiring minimality: DM = mixture of singlet and doublet states
- uu, dd, du and ud benchmark models with free parameters

 m_H , m_A , $m_{H^{\pm}}$, M_D , M_S , y , $\tan \beta$, $\tan \theta$
The Madgraph model

generalization of the MSSM Bino-Higgsino scenario

is available

- *** Interesting complementarity of**
	- Mono-X searches (in particular, mono-heavy quark searches)
	- searches for additional Higgs bosons
	- searches for new EW states
	- DM direct and indirect detection
- *** Large set of new signatures for the additional Higgs bosons** & for the new EW states