Simplified Models for Run II

Martin Bauer

based on 1612.xxxx with Uli Haisch and Felix Kahlhoefer

Evolution of Models for DM Collider Searches

EFTs Simplified Models Consistent

Simplified Models

Consistent Scalar Models

Higgs Portal Higgs Mixing

 $y_q\bar{q}Hq + \lambda_2H^{\dagger}H\phi^{\dagger}\phi$

 $y_q\bar{q}Hq + \mu_2H^{\dagger}H\phi + g_\chi\bar{\chi}\phi\chi$

Consistent Scalar Models

 $y_q\bar{q}Hq + \lambda_2H^{\dagger}H\phi^{\dagger}\phi$

- SM mediator
- more economical
- scalar Dark Matter

Higgs Portal Higgs Mixing

 $y_q\bar{q}Hq + \mu_2H^{\dagger}H\phi + g_\chi\bar{\chi}\phi\chi$

- new messenger
- more couplings
- also fermionic Dark Matter

Consistent Scalar Models

Higgs Portal and Higgs Mixing models are consistent, but strongly constrained by Higgs measurements

In both, the Higgs is a messenger…

These models are searched for by the Higgs CS working group…

Two Higgs Doublet Models

 $\mu_1 H_1^{\intercal} H_1 + \mu_2 H_2^{\intercal} H_2 +$ $\sqrt{2}$ $\mu_3 H_1^\dagger H_2 + h.c.$ $+\lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1)(H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2)(H_2^{\dagger} H_1)$ $+$ $\sqrt{2}$ $(\lambda_5 (H_1^{\dagger} H_2)^2 + h.c. + (H_1^{\dagger} H_1)^2)$ $\sqrt{2}$ $\lambda_6 H_1^\dagger H_2 + h.c.$) + ($H_2^\dagger H_2$) $\sqrt{2}$ $\lambda_7 H_1^{\dagger} H_2 + h.c.$ $+\bar{Q}Y_u^1\tilde{H}_1u_R+\bar{Q}Y_d^1H_1d_R+\bar{L}Y_\ell^1H_1\ell_R+\bar{Q}Y_u^2\tilde{H}_2u_R+\bar{Q}Y_d^2H_2d_R+\bar{L}Y_\ell^2H_2\ell_R+h.c.$

Impose a Z2 symmetry:

$$
H_1 \to H_1
$$

$$
H_2 \to -H_2
$$

$$
f_R \to -f_R
$$

Two Higgs Doublet Models

 $\mu_1H_1^{\intercal}H_1 + \mu_2H_2^{\intercal}H_2 +$ $+\lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1)(H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2)(H_2^{\dagger} H_1)$ $+$ $\sqrt{2}$ $\lambda_5 (H_1^{\dagger} H_2)^2 + h.c.$

 $q + \bar{Q}Y_d^1H_1d_R + \bar{L}Y_\ell^1H_1\ell_R + \bar{Q}Y_u^2\tilde{H}_2u_R$

Impose a Z2 symmetry:

$$
H_1 \to H_1
$$

$$
H_2 \to -H_2
$$

$$
f_R \to -f_R
$$

 $h.f. c.$

Two Higgs Doublet Models

 $\mu_1H_1^{\intercal}H_1 + \mu_2H_2^{\intercal}H_2 +$ $+\lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1)(H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2)(H_2^{\dagger} H_1)$ $+$ $\sqrt{2}$ $\lambda_5 (H_1^{\dagger} H_2)^2 + h.c.$ $q + \bar{Q}Y_d^1H_1d_R + \bar{L}Y_\ell^1H_1\ell_R + \bar{Q}Y_u^2\tilde{H}_2u_R$

Impose a Z2 symmetry:

Natural flavour protection

Mimics enhanced symmetries of possible UV completions

$$
H_1 \to H_1
$$

$$
H_2 \to -H_2
$$

$$
f_R \to -f_R
$$

 $h.f. c.$

Inert Two Higgs Doublet Models

 $\mu_1H_1^{\intercal}H_1 + \mu_2H_2^{\intercal}H_2$ ¹*H*² ⁺ *h.c.*⌘ $+\lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1)(H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2)(H_2^{\dagger} H_1)$ $+$ $\sqrt{2}$ $\lambda_5 (H_1^{\dagger} H_2)^2 + h.c.$ $q + \bar{Q}Y_d^1H_1d_R + \bar{L}Y_{\ell}^1H_1\ell_R$ $h.f. c.$ see Alexander Belyaev's talk

Impose a Z2 symmetry:

Natural flavour protection

$$
H_1 \to H_1
$$

$$
H_2 \to -H_2
$$

 $\langle H_1 \rangle = v_1 = v$

 $\langle H_2 \rangle = 0$

The second multiplet H2 contains a DM candidate

Generalization of the Higgs Portal.

Two Higgs Doublet Models & Mediator + *H†* ¹*H*¹ ⇣ 6*H†* ¹*H*² + h*.*c*.* \mathbf{S} + *H†* ²*H*² ⇣ 7*H†* ¹*H*² + h*.*c*.* $\overline{}$ *. Y* 1 *u* = *Y ^d* ¹ = *Y* ` ¹ = 0 *,* (type I)*,*

 $\mu_1 H_1^{\intercal} H_1 + \mu_2 H_2^{\intercal} H_2 +$ $\overline{1}$ $\mu_1H_1^\dagger H_1 + \mu_2 H_2^\dagger H_2 + \left(\mu_3 H_1^\dagger H_2 + h.c.\right)$ $+\lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1)(H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2)(H_2^{\dagger} H_1)$ $+$ $\sqrt{2}$ $+ \left(\lambda_5 (H_1^\dagger H_2)^2 + h.c. \right)$ $+ \bar{Q} Y_d^1 H_1 d_R + \bar{L} Y_\ell^1 H_1 \ell_R + \bar{Q} Y_u^2 \tilde{H}_2 u_R$ h*Hi*i = (0*, vi/* $p_1H_1^+H_1 + \mu_2H_2^+H_2 + (\mu_3H_1^+)$ $\begin{array}{ccc} 2 & 1 & 2 & 1 \end{array}$ $\lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1)$ result the scalar potential as given in \mathcal{L} is \mathcal{L} is \mathcal{L} is \mathcal{L} is \mathcal{L} neutral neut $H_1^\dagger H_2 + h.c. \Big) \; \Big\vert \; ,$ The dependence of our results on the choice of Yukawa sector will be discussed in some detail in the next section of $d\overline{H}_d$ in the next section.

Add pseudoscalar mediator & allow for soft breaking change is by mixing a CP-odd mediator *P* with the CP-odd Higgs that arises from (2.1). Add pseudoscalar integrator **x** allow for soil Add pseudoscalar mediator & allow for soft breaking operators this leaves

The most economic way to constraint fermionic $\mathcal{L}_\mathcal{A}$ to couple fermionic DM to the SM through pseudoscalar ex-

Taking DM to be a Dirac fermion a separate *Z*² symmetry under which !

$$
V_P = \frac{1}{2} m_P^2 P^2 + P \left(i b_P H_1^{\dagger} H_2 + \text{h.c.} \right) - y_{\chi} P \bar{\chi} i \gamma_5 \chi
$$

with $\langle H_1 \rangle = v_1$, $\langle H_2 \rangle = v_2$ $\sqrt{v_1^2 + v_2^2} = 246 \,\text{GeV}$

and the DM mass *m* are further input parameters in our analysis. Generalization of Higgs Mixing.

 $h.f. c.$

Parameter Galore?

$$
m_P\,,\mu_1,\mu_2,\mu_3\,,b_P\atop {\lambda_1,\lambda_2,\lambda_3,\lambda_4\,,\lambda_5}\,,
$$


```
m_h, M_H, M_A, M_{H^{\pm}}, M_av, \tan \beta, \cos(\beta - \alpha), \sin \thetam_f, y_\chi, \lambda_3
```
Parameter Galore?

 m_P *,* μ_1 *,* μ_2 *,* μ_3 *,* b_P $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5$ y_q, y_χ

 10

 10^{-1}

 $\begin{split} & \eta_{\rm A}, M_H, M_A, M_{H^\pm}, M_a \ & \text{with} \ \beta, \cos(\beta-\alpha), \sin\theta \ & \eta_{\rm A}, y_\chi, \lambda_3 \ \end{split}$

In practice: six free parameters

 $\tan \beta$, $\sin \theta$, y_χ , λ_3 , M_a , M_A or M_H DMF: M_a , g_χ , g_f

Five spin 0 mass eigenstates (three relevant)

 h, a, H or $A, (H^{\pm})$ DMF: h, a

Pseudoscalars couple directly to DM, H and h have aa and aZ couplings

The light scalar h (SM Higgs)

Figure 2. Branching ratios of the lighter scalar *h* as a function of the pseudoscalar mass *M^a* for two different choices of *Decays into off-shell mediators important.* The parameters of the parameters of the para Remains SM-like for Ma > 110 GeV p2, 3 mp2, car
1 I.O. C.^{\/} Decays into off-shell mediators important.

The heavy scalar H

large Branching ratio into aZ : promising Mono-Z signal \mathbf{D} = \mathbf{D} = \mathbf{D} = \mathbf{D} = \mathbf{D} = \mathbf{D} = \mathbf{D}

The heavy pseudo-scalar A

large Branching ratio into ah : promising Mono-H signal

The light mediator a

Mono-Higgs

In contrast to DMF model resonantly enhanced

Mono-Higgs

In contrast to DMF model resonantly enhanced

Mono-Z

The same resonant enhancement gives g_{ϕ} _{Z} a promising mono-Z signal \overline{a}

see Jose No's talk

Mono-Higgs and Mono-Z searches are potential discovery channels with indirect information on the mass hierarchy of the extra scalars.

Mono-jets

Interference effects:

$$
\mathcal{M}(pp \to j + \chi \bar{\chi}) \propto \frac{1}{s - M_a^2 - iM_a\Gamma_a} - \frac{1}{s - M_A^2 - iM_A\Gamma_A}
$$

$t\bar{t}$ + $E_{T, \text{miss}}$

Not competitive at the moment, but also not systematically limited Not compati $\overline{16}$ *a*

g constraint than Monojets @ 300 Projected to provide a stronger fb^{\wedge} -

Haisch, Pani, Polesello 1611.09841

Summary Plots


```
mono-jet, 40 fb^-1, 13 TeV
tt + MET, 300 fb^-1, 14 TeV
mono-Higgs, 40 fb^-1, 13 TeV
```
ditop, 20.3 fb^-1, 8 TeV , ATLAS-CONF-2016-073

Higgs invisible $<$ 25 $\%$, ATLAS-CONF-2015-044

Conclusions

THDM & mediator models provide a consistent simplified model, reproducing features of DMF models in the appropriate limit, and with links to well-motivated UV completions

Conclusions

THDM & mediator models provide a consistent simplified model, reproducing features of DMF models in the appropriate limit, and with links to well-motivated UV completions

Spectacular Phenomenology with mono-Higgs and mono-Z potential discovery channels

Underlines complementary approach at run II between different MET searches, but also of non-MET searches (di-top @ large Ma)

Ready-to-go UFO file available