DMWG Public Meeting Overview of 1604.07975

CERN Dec 15th 2016

Matthew McCullough with Englert and Spannowsky

It seems there is a move towards more realistic scalar mediator models, especially as in 2HDM.

I think this is great!

Summary

Scalar model proposed in white papers:

$$\mathcal{L} = \mathcal{L}_{SM} + g_{\chi} \phi \overline{\chi} \chi + g_t \phi \overline{t} t$$
Mediator is

This is an EFT... Could arise from an operator such as $\frac{\phi}{\Lambda}g_tH\overline{Q}_3U_3$

gauge singlet.

Which is gauge-invariant but nonrenormalizable.

Scalar model proposed in white papers:

$$\mathcal{L} = \mathcal{L}_{SM} + g_{\chi} \phi \overline{\chi} \chi + g_t \phi \overline{t} t$$
Mediator is

gauge singlet.

This is an EFT... Could arise from singlet mixing $\phi |H|^2$

But unless Higgs couplings are also modified this theory will break down at high energies.

Scalar model proposed in white papers:

$$\mathcal{L} = \mathcal{L}_{SM} + g_{\chi} \phi \overline{\chi} \chi + g_t \phi \overline{t} t$$
Mediator is
gauge singlet

This is an EFT... Could arise from a 2HDM $g_t H_2 \overline{Q}_3 U_3$

But unless modified Higgs couplings <u>and</u> new pseudoscalar and charged scalar states are included, will break down somewhere.

Scalar model proposed in white papers:

$$\mathcal{L} = \mathcal{L}_{SM} + g_{\chi} \phi \overline{\chi} \chi + g_t \phi \overline{t} t$$
Mediator is
gauge singlet.

Ok, so it is an EFT, but at least it is renormalizable?

Nope. This coupling breaks EW gauge invariance explicitly so, although the operator is dimension-4, theory cannot be renormalized with a finite number of counterterms.

Manohar (and many others):

The basic premise of effective theories is that dynamics at low energies does not depend on the details of the dynamics at high energies. As a result, low energy physics can be described using an effective Lagrangian that contains only a few degrees of freedom, ignoring additional degrees of freedom present at higher energies.

Is it a good EFT?

For Simp Models, doesn't matter whether you call EFT vs not EFT, important point is that they model underlying process without breaking down at relevant energy scales...

Letting EFT Guide...

EFT perspective also tells us what we are missing. If we allow these couplings:

$$\mathcal{L} = \mathcal{L}_{SM} + g_{\chi}\phi\overline{\chi}\chi + g_t\phi\overline{t}t$$

Then why aren't these included?

$$\mathcal{L} = c_{\phi} \phi \left(\frac{M_W^2}{v} W^{+\mu} W_{\mu}^{-} + \frac{M_Z^2}{2v} Z^{\mu} Z_{\mu} \right) ?$$

Letting EFT Guide...

From simple EFT perspective can see they arise at same dimension, with same symmetries ϕ ____

$$\frac{\varphi}{\Lambda}g_tH\overline{Q}_3U_3$$

And for gauge couplings $\mathcal{L} = \frac{\phi}{\Lambda} |D_{\mu}H|^2 \to \frac{\phi}{\Lambda} \left(M_W^2 W^{+\mu} W_{\mu}^- + \frac{1}{2} M_Z^2 Z^{\mu} Z_{\mu} \right)$

This implies that in typical UV complete model you are not going to <u>only</u> have the quark couplings of the usual scalar simplified model.

Letting EFT Guide...

From simple EFT perspective can see they arise at same dimension, with same Should be careful about imposing personal

 $\mathcal{L} = \frac{\phi}{\Lambda} |D_{\mu}H|^2 \to \frac{1}{\Lambda} \int V^{\mu} V$

This implies that in typical UV complete model you are not going to <u>only</u> have the quark couplings of the usual scalar simplified model.

taste on where we believe these couplings

Which Channels?

Models

So the coupling being left out could be the most important one... In other words:

With the usual scalar simplified model you may not be studying something corresponding to a description of well-motivated models...

E.g. Mixed singlet: $\mathcal{L} = \sin\theta \phi \left(\frac{m_q}{v} \overline{q}q + \frac{m_l}{v} \overline{l}l + 2 \left(\frac{M_W^2}{v} W^{+\mu} W_{\mu}^{-} + \frac{M_Z^2}{2v} Z^{\mu} Z_{\mu} \right) \right)$ This will be a story all about VBF...

Models

In a 2HDM the fermion and the gauge boson couplings may be varied independently. Higgs couplings go like:

$$c_{V,h} \propto 1 - \delta^2/2$$
 , $c_{t,h} \propto 1 - \delta \cot \beta$

whereas if heavy scalar is the mediator then

$$c_{V,H} \propto \delta$$
 , $c_{t,H} \propto -\coteta$

So this is a nice UV-complete implementation that allows to explore richer scalar mediator phenomenology.

Comment

From talks this morning it seems there is a move towards more realistic scalar mediator models, especially as in 2HDM, which will cover these blind spots!