SHIELD OPTIMIZATION for 2018 Drell-Yan RUN

- Goals:
 - Decrease the radiation dose in the environment around Bat. 888
 - Based on radiation shield used during run 2015
 - Design a absorber that allow to run at maximum intensity, ie. 10⁹ π-/spill SPS cycle 33.6s
 - The real dose must be scaled from this intensity

Old starting point: FLUKA and Chris Theis input file (Sept. 2010)

10^9 pion/spill @ 33.6s

- Dose with C. Theis input files.
 - Beam: π-
 - p = 191 GeV/c; ∆p = 4.22 GeV/c FWHM; gaussian
 - x = y = 0 cm;
 - $\sigma_x = \sigma_y = 1$ cm; $\Delta x = \Delta x = 0$; pencil like beam
 - Absorber:
 - Large external concrete

- •Conversion from pSv/prim to uSv/h
 - Spill in one hour:
 - SPS cy 33.6s: 107
 - SPS cy 45.6s: 79
 - Beam rate
 - 6x10⁸
 - 1x10⁹
 - 6e8@33.6s: c = 6.42x10⁴
 - 1e9@33.6s: c = 1.07x10⁵
 - 1e9@45.6s: c = 7.90x10⁴

old cryostat and target screen: C. Theis configuration

3.0e-02 2.7e-01 2.4e+00 2.2e+01 1.9e+02 1.7e+03 1.6e+04 1.4e+05 1.2e+06 1.1e+07 1.0e+08

.0e-02 9.0e-02 8.0e-01 7.2e+00 6.4e+01 5.8e+02 5.2e+03 4.6e+04 4.2e+05 3.7e+06 3.3e+07 3.0e+05e+01 uSWh

Study of outgoing particles from concrete shield

Particles x primary, to be scaled by 10⁹ spill⁻¹

Summary of the simulations

configu ration	note		
Final-04	configuration of 2015 run		
Final-05	Final-04 + 80cm of concrete blocks on the Saleve side only		
Final-06	Final-06 + 80cm of concrete blocks on top		
Final-07	Final-06 but with 20cm of borated polyethylene (5%) instead of concrete		
Final-08	Final-06 + 10cm of polyethylene on the concrete side blocks		

DAQ Mean: 4.08 uSv/h

Dose-eq (uSv/h) (10 ⁸ pion/s - 9,6/33.6s) (n=107x10 ³) (Fin04)

DAQ Mean: 3.57 uSv/h

Z (cm) (y = 920 to 1317,5) (x = -16 to +16)

DAQ Mean: 3.44 uSv/h

4.4 f(x) = M1 * x + N1Mean = N1 = 3.44 uSv/h4.2 Slope = M1 = -1.07e-03 uSv/ 4 3.8 Dose [uSv/h] 3.6 3.4 3.2 3 uSv/h 3 2.8 2.6 2.4 -200 -500 -400 -300 -100 100 200 300 400 500 0 Z (cm) (y = 920 to 1317,5) (x = -16 to +16)

DAQ Mean: 3.64 uSv/h

DAQ Mean: 3.32 uSv/h

Conclusions

configu ration	Mean dose in control room (µSv/h)	Dose Reducti on	note	
Final-04	4,08	0%	configuration of 2015 run	radioprotection group check required
Final-05	3,57	-12.5%	Final-04 + 80cm of concrete blocks on the Saleve side only	
Final-06	3,44	-15.7%	Final-06 + 80cm of concrete blocks on top	
Final-07	3,64	-10.8%	Final-06 but with 20cm of borated polyethylene (5%) instead of concrete	
Final-08	3,32	-18,6%	Final-06 + 10cm of polyethylene on the concrete side blocks	

- 50% of particles outside concrete shield are low energetic neutrons
- The dose can be considerably reduced in the DAQ floor (beam level) adding 80 cm of concrete on Saleve side
- The concrete top help to lower the dose under the ceiling, small effects on DAQ floor
- 20-25 cm of borated polyethylene are more or less equivalent to 80cm of concrete
- Absorbtion by the building walls is unknown
- Other radical solutions are possible, but with costs and work enourmous

Configuration CT30

Configuration CT30

Mean: 2.16 uSv/h

