Fluka simulations for DY 2018 run

- Overview
- Neutron capture
- Simulations
- Suggestions
- conclusions

Neutrons capture materials possible candidates

- The neutrons absorber candidate are:
 - 6Li
 - Cross section at 2200 m/s: 940 barn
 - Natural abundance: 7,5%
 - ⁶Li+n→t(2.05 MeV)+α(2.73 MeV)
 - 10**B**
 - Cross section at 2200 m/s: 3839 barn
 - Natural abundance: 19.9%
 - ${}^{10}B + n \rightarrow {}^{7}Li(0.84 \, MeV) + \alpha(1,47 \, MeV) \dots (93.7 \, \%)$
 - $\int ti \rightarrow Li(1.02 \, MeV) + \gamma(1.78 \, MeV)$
 - ${}^{10}B + n \rightarrow {}^{7}Li(1.02 \, MeV) + \alpha(1.78 \, MeV) \dots (6.3 \, \%)$
 - 113Cd
 - Cross section at 2200 m/s: 20600 barn
 - Natural abundance: 12.2%
 - Many with γ and α emission
 - 155Gn and 157Gn
 - Cross section at 2200 m/s: 61100 and 259000 barn
 - Natural abundance: 14.8% and 15.7%
 - Many with γ and α emission

Neutron Energy (eV)

Neutrons absorption cross section (thermal neutrons)

	Composition/Z	A	Neutrons absorption cross section at 2200 m/s [barn]	Density [g/cm³]	Mean free path [cm]
⁶ Li	Z = 3	6.015	940	0.534	1.99*10 ⁻²
⁷ Li	Z = 3	7.016	0.0454	0.534	4.81*10 ²
¹⁰ B	Z = 5	10.013	3835	2.08	2.08*10 ⁻³
¹¹ B	Z = 5	11.004	0.0055	2.08	1.60*10 ²
¹⁵⁵ Gd	Z = 64	134.95	61000	7.88	4.66*10-4
¹⁵⁷ Gd	Z = 64	136.94	259000	7.88	1.11*10-4
nat Gd	¹⁵⁵ Gd(14.8%)+ ¹⁵⁷ Gd(15.7%)	157.25	42568	7.88	7.78*10-4
nat Li	⁶ Li(7.4%)+ ⁷ Li(92.6%)	6.94	70.5	0.534	3.06*10 ⁻¹
nat B	¹⁰ B(20%)+ ¹¹ B(80%)	10.81	767	2.08	1.13*10 ⁻²
LiCO ₃ Si	⁶ Li(95%)+ ⁷ Li(5%)			1.36	1.15*10 ⁻¹
Borated Polyeth	B(30%)+PolyEth(70%)			1.19	4.04*10 ⁻²

Macroscopic cross section and mean free path

Macroscopic cross section (so called ???)

$$\Sigma = \sum_{i} P_{i} N_{i} \sigma_{i}$$

 P_i = percentage in mass of ith element N_i = number of nuclei per cm³ of the ith element σ_i = microscopic cross section of ith element

$$N_{i} = \frac{\rho * N_{A}}{M} \qquad \begin{array}{l} \rho = \text{density [g/cm^{3}]} \\ N_{A} = \text{Avogadro number (6.022*10^{23} atoms/mole)} \\ M = atomic \text{ weigth [g/mole]} \end{array}$$

Mean free path

$$\lambda = \frac{1}{\Sigma}$$

gadolinium

- is a silvery-white, malleable, and ductile rare earth metal
- is believed to be ferromagnetic at temperatures below 20 °C and it is strongly paramagnetic above this temperature.
- demonstrates a magnetocaloric effect whereby its temperature increases when it enters a magnetic field, and decreases when it leaves the magnetic field.
- Melting point: 1312 ^oC
- Density: 7.9 g/cm³
- Commercial material
- Non toxic
- Is widely used as a burnable absorber in nuclear power plants; gadolinium is very effective in compensation of the excess of reactivity

Check of availability, costs and delivered shape with specialized technicians and / or engineer. Check for enriched ¹⁵⁷Gn

Configuration of 2015 run

7

Run 2015 geometry (special thanks to Genki)

Positions > After Installation

Pictures (thanks to Genki)

2015 run guidelines

Maximum flexibility to control the particle flux downstream using different stainless steel thickness

> 0 cm 5 cm 10 cm 15 cm 20 cm

Genki Nukazuka 14/12

Material budget (thanks to Genki)

- Dimension : 59 cm × 55 cm × 0.3175 cm
- Density : 1.36 g/cm³

	A	z	Mass ratio (⁶ Li vs ⁷ Li)	Mass ratio (Li ₂ CO ₃)	Mass ratio (Li ₂ CO ₃ vs Si)	Mass ratio
⁶ Li	6	3	95.00	18.79		5.354
7Li	7	3	5.00	10.79	30	0.282
С	12.01	6		16.25	30	4.876
0	16.00	8		64.96		19.49
Si	28.09	14			70	70.00

Polyethylene

n * (C_2H_4) Density: 0.94 g/cm³

Simulations

name	Additional sheet	1st sheet	2nd sheet	3rd sheet
		cm	cm	cm
MM01-ntg-10	Air (2015 configuration)	0.32 air	0.32 air	1 air
MM01-ntg-11	Lithium carbonated + polyethylene	0.32 Li	0.32 Li	1 polyeth
MM01-ntg-12	Borated polyethylene (B = 30%)	0.32 Bpol	0.32 Bpol	1 Bpol
MM01-ntg-13	gadolinium + polyethylene	0.32 Gd	0.32 polyeth	1 polyeth
	50 Ring012 50 Rium1012 83	1st 55013 5501	2nd 3rd	
	150 F	160 170	180	11

MM01 flux of various particles

particles/primary

MM01 Energy of particles

Photons flux on MM01 detector

Neutron flux on MM01 detector

MM0-ntg-10 and 11 crossing point

10

air

11

Charged particles flux across MM01 upstrean surface

Neutral particles flux across MM01 upstrean surface

MM0-ntg-12 and 13 crossing point

15

Summary of simulations

simulation	Additional sheet	Thickness [cm]	phot/Pr	neutron/Pr	e ⁻ /Pr/cm^2	charg/Pr
MM01-ntg-10	Air (run 2015)	0.32+0.32+1	2.145	1.762	0.109	0.219
MM01-ntg-11	Carbonated Lithium + polyethylene (run 2015)	0.32+0.32+1	2.259	1,600	0.119	0.230
MM01-ntg-12	Borated polyethylene (B = 30%)	0.32+0.32+1	2.383	1.328	0.108	0.230
MM01-ntg-13	Gadolinum+ polyethylene	0.32 + 1.32	2.411	1.616	0,127	0.234

Neutral = neutrons + photons + other Check with standard flka scoring

Neutrons crossing MM1

- Lithium -9%
- Borated polyethylene -25%

Photons crossing MM1

- Lithium +5%
- Borated polyethylene +11%

Suggestions from cheap to expensive

- Reshouffle the downstream stainless steel layers
 - Motivation: leave more material in the neutron source direction
 - Now: 5cm + 5cm + airgap + 10cm
 - Reshouffled: 10cm + 5cm + airgap + 5cm
 - Check the side bar suspensions and its buttonholes
- Remove the downstream Li layer and polyethylene
 - Simply wrong: always, put the moderator first and then a neutron absorber
- Replace the side suspensions with longer one
 - Leave more air gap between the last two layers
- Use natural borated polyethylene instead of Li

conclusions

- No impressive neutrons reduction even with the best neutrons absorbers (in theory)
- No relevant difference in XY distribution
- For neutrons flux reduction, borated polyhethylene is better than carbonated lithium sheet
- For photons flux reduction, carbonated lithium is better tha borathed polyethylene
- Check of vertex, momentum resolution etc, must be done using the standard Compass simulations tools.

But the basic question is: The high rates is due to neutrons or photons interaction?

γ interaction with matter

γ interaction with matter

Figure 32.15: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [51]:

 $\sigma_{\rm p.e.}$ = Atomic photoelectric effect (electron ejection, photon absorption)

 $\sigma_{\text{Rayleigh}} = \text{Rayleigh}$ (coherent) scattering-atom neither ionized nor excited

 $\sigma_{\text{Compton}} =$ Incoherent scattering (Compton scattering off an electron)

 $\hat{\kappa}_{nuc} = Pair production, nuclear field$

 $\kappa_e =$ Pair production, electron field

 $\sigma_{g.d.r.}$ = Photonuclear interactions, most notably the Giant Dipole Resonance [52].

In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).