Fluka simulations for DY 2018 run

- Overview
- Neutron capture
- Simulations
- Suggestions
- Conclusions
Neutrons capture materials possible candidates

The neutrons absorber candidate are:

- **6Li**
 - Cross section at 2200 m/s: 940 barn
 - Natural abundance: 7.5%
 - 6Li + n → t (2.05 MeV) + α (2.73 MeV)

- **10B**
 - Cross section at 2200 m/s: 3839 barn
 - Natural abundance: 19.9%
 - 10B + n → 7Li (0.84 MeV) + α (1.47 MeV)… (93.7 %)
 - 7Li → 7Li (1.02 MeV) + γ (1.78 MeV)
 - 10B + n → 7Li (1.02 MeV) + α (1.78 MeV)… (6.3 %)

- **113Cd**
 - Cross section at 2200 m/s: 20600 barn
 - Natural abundance: 12.2%
 - Many with γ and α emission

- **155Gn and 157Gn**
 - Cross section at 2200 m/s: 61100 and 259000 barn
 - Natural abundance: 14.8% and 15.7%
 - Many with γ and α emission
Possible alternatives
Li – B – Cd - Gn
Neutrons absorption cross section (thermal neutrons)

<table>
<thead>
<tr>
<th>Composition/Z</th>
<th>A</th>
<th>Neutrons absorption cross section at 2200 m/s [barn]</th>
<th>Density [g/cm³]</th>
<th>Mean free path [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6Li</td>
<td>Z = 3</td>
<td>6.015</td>
<td>940</td>
<td>0.534</td>
</tr>
<tr>
<td>7Li</td>
<td>Z = 3</td>
<td>7.016</td>
<td>0.0454</td>
<td>0.534</td>
</tr>
<tr>
<td>10B</td>
<td>Z = 5</td>
<td>10.013</td>
<td>3835</td>
<td>2.08</td>
</tr>
<tr>
<td>11B</td>
<td>Z = 5</td>
<td>11.004</td>
<td>0.0055</td>
<td>2.08</td>
</tr>
<tr>
<td>155Gd</td>
<td>Z = 64</td>
<td>134.95</td>
<td>61000</td>
<td>7.88</td>
</tr>
<tr>
<td>157Gd</td>
<td>Z = 64</td>
<td>136.94</td>
<td>259000</td>
<td>7.88</td>
</tr>
<tr>
<td>nat Gd 155Gd(14.8%) + 157Gd(15.7%)</td>
<td>157.25</td>
<td>42568</td>
<td>7.88</td>
<td>7.78*10^{-4}</td>
</tr>
<tr>
<td>nat Li 6Li(7.4%) + 7Li(92.6%)</td>
<td>6.94</td>
<td>70.5</td>
<td>0.534</td>
<td>3.06*10^{-1}</td>
</tr>
<tr>
<td>nat B 10B(20%) + 11B(80%)</td>
<td>10.81</td>
<td>767</td>
<td>2.08</td>
<td>1.13*10^{-2}</td>
</tr>
<tr>
<td>LiCO$_3$Si 6Li(95%) + 7Li(5%)</td>
<td>1.36</td>
<td>1.15*10^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borated Polyeth</td>
<td>B(30%) + PolyEth(70%)</td>
<td>1.19</td>
<td>4.04*10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>
Macroscopic cross section and mean free path

Macroscopic cross section (so called ???)

\[\Sigma = \sum_i P_i N_i \sigma_i \]

- \(P_i \) = percentage in mass of \(i^{th} \) element
- \(N_i \) = number of nuclei per cm\(^3\) of the \(i^{th} \) element
- \(\sigma_i \) = microscopic cross section of \(i^{th} \) element

Mean free path

\[\lambda = \frac{1}{\Sigma} \]

- \(\rho \) = density [g/cm\(^3\)]
- \(N_A \) = Avogadro number (6.022\(\times \)10\(^{23}\) atoms/mole)
- \(M \) = atomic weight [g/mole]
gadolinium

- is a silvery-white, malleable, and ductile rare earth metal
- is believed to be ferromagnetic at temperatures below 20 °C and it is strongly paramagnetic above this temperature.
- demonstrates a magnetocaloric effect whereby its temperature increases when it enters a magnetic field, and decreases when it leaves the magnetic field.
- Melting point: 1312 °C
- Density: 7.9 g/cm³
- Commercial material
- Non toxic
- Is widely used as a burnable absorber in nuclear power plants; gadolinium is very effective in compensation of the excess of reactivity

Check of availability, costs and delivered shape with specialized technicians and / or engineer. Check for enriched 157Gn
Configuration of 2015 run

LiCO$_3$ MM01 DC0 DC1 SM1
Run 2015 geometry
(special thanks to Genki)

- Li sheet (0.32cm)
- Polyethylene (1cm)
- Air gap
- Stainless steel 10cm
- Stainless steel 10cm
Pictures
(thanks to Genki)

2015 run guidelines

Maximum flexibility to control the particle flux downstream using different stainless steel thickness

- 0 cm
- 5 cm
- 10 cm
- 15 cm
- 20 cm
Material budget
(thanks to Genki)

Specifications of Li$_2$CO$_3$ & Si Rubber Sheet

- Dimension: 59 cm × 55 cm × 0.3175 cm
- Density: 1.36 g/cm3

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>Mass ratio ((^6)Li vs (^7)Li)</th>
<th>Mass ratio (Li$_2$CO$_3$)</th>
<th>Mass ratio (Li$_2$CO$_3$ vs Si)</th>
<th>Mass ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^6)Li</td>
<td>6</td>
<td>3</td>
<td>95.00</td>
<td>18.79</td>
<td>30</td>
</tr>
<tr>
<td>(^7)Li</td>
<td>7</td>
<td>3</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12.01</td>
<td>6</td>
<td>16.25</td>
<td></td>
<td>4.876</td>
</tr>
<tr>
<td>O</td>
<td>16.00</td>
<td>8</td>
<td>64.96</td>
<td>70</td>
<td>19.49</td>
</tr>
<tr>
<td>Si</td>
<td>28.09</td>
<td>14</td>
<td>70</td>
<td>70</td>
<td>70.00</td>
</tr>
</tbody>
</table>

Polyethylene

n * (C$_2$H$_4$)
Density: 0.94 g/cm3
Simulations

<table>
<thead>
<tr>
<th>name</th>
<th>Additional sheet</th>
<th>1st sheet</th>
<th>2nd sheet</th>
<th>3rd sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM01-ntg-10</td>
<td>Air (2015 configuration)</td>
<td>0.32 air</td>
<td>0.32 air</td>
<td>1 air</td>
</tr>
<tr>
<td>MM01-ntg-11</td>
<td>Lithium carbonated + polyethylene</td>
<td>0.32 Li</td>
<td>0.32 Li</td>
<td>1 polyeth</td>
</tr>
<tr>
<td>MM01-ntg-12</td>
<td>Borated polyethylene (B = 30%)</td>
<td>0.32 Bpol</td>
<td>0.32 Bpol</td>
<td>1 Bpol</td>
</tr>
<tr>
<td>MM01-ntg-13</td>
<td>gadolinium + polyethylene</td>
<td>0.32 Gd</td>
<td>0.32 polyeth</td>
<td>1 polyeth</td>
</tr>
</tbody>
</table>
MM01
flux of various particles
MM01
Energy of particles

Photons flux on MM01 detector

Neutron flux on MM01 detector
MM0-ntg-10 and 11 crossing point

10 air

11 Li
MM0-ntg-12 and 13 crossing point

12 Borated polyethylene

13 Gadolinium
Summary of simulations

<table>
<thead>
<tr>
<th>simulation</th>
<th>Additional sheet</th>
<th>Thickness [cm]</th>
<th>phot/Pr</th>
<th>neutron/Pr</th>
<th>e-/Pr/cm^2</th>
<th>charg/Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM01-ntg-10</td>
<td>Air (run 2015)</td>
<td>0.32+0.32+1</td>
<td>2.145</td>
<td>1.762</td>
<td>0.109</td>
<td>0.219</td>
</tr>
<tr>
<td>MM01-ntg-11</td>
<td>Carbonated Lithium + polyethylene (run 2015)</td>
<td>0.32+0.32+1</td>
<td>2.259</td>
<td>1.600</td>
<td>0.119</td>
<td>0.230</td>
</tr>
<tr>
<td>MM01-ntg-12</td>
<td>Borated polyethylene (B = 30%)</td>
<td>0.32+0.32+1</td>
<td>2.383</td>
<td>1.328</td>
<td>0.108</td>
<td>0.230</td>
</tr>
<tr>
<td>MM01-ntg-13</td>
<td>Gadolinum+ polyethylene</td>
<td>0.32 + 1.32</td>
<td>2.411</td>
<td>1.616</td>
<td>0.127</td>
<td>0.234</td>
</tr>
</tbody>
</table>

Neutral = neutrons + photons + other
Check with standard flka scoring

Neutrons crossing MM1
- Lithium -9%
- Borated polyethylene -25%

Photons crossing MM1
- Lithium +5%
- Borated polyethylene +11%
Suggestions from cheap to expensive

- Reshuffle the downstream stainless steel layers
 - Motivation: leave more material in the neutron source direction
 - Now: 5cm + 5cm + airgap + 10cm
 - Reshuffled: 10cm + 5cm + airgap + 5cm
 - Check the side bar suspensions and its buttonholes
- Remove the downstream Li layer and polyethylene
 - Simply wrong: always, put the moderator first and then a neutron absorber
- Replace the side suspensions with longer one
 - Leave more air gap between the last two layers
- Use natural borated polyethylene instead of Li
conclusions

- No impressive neutrons reduction even with the best neutrons absorbers (in theory)
- No relevant difference in XY distribution
- For neutrons flux reduction, borated polyethylene is better than carbonated lithium sheet
- For photons flux reduction, carbonated lithium is better than borathed polyethylene
- Check of vertex, momentum resolution etc, must be done using the standard Compass simulations tools.

But the basic question is:
The high rates is due to neutrons or photons interaction?
\(\gamma \) interaction with matter

![Graph showing linear attenuation coefficient versus photon energy with contributions from photoelectric absorption, Compton scattering, and pair production.

Fig. 2.3 Linear attenuation coefficient of NaI showing contributions from photoelectric absorption, Compton scattering, and pair production.
\(\gamma \) interaction with matter

Figure 32.15: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [51]:

- \(\sigma_{\text{p.e.}} \): Atomic photoelectric effect (electron ejection, photon absorption)
- \(\sigma_{\text{Rayleigh}} \): Rayleigh (coherent) scattering—atom neither ionized nor excited
- \(\sigma_{\text{Compton}} \): Incoherent scattering (Compton scattering off an electron)
- \(\kappa_{\text{inc}} \): Pair production, nuclear field
- \(\kappa_{\text{e}} \): Pair production, electron field
- \(\sigma_{\text{G.D.R.}} \): Photonic nuclear interactions, most notably the Giant Dipole Resonance [52].

In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).