2016 – residual current in V plane

TB 30.08 16 By Stephane P.

- ◆ Current appeared in April 2016, was not there in 2015
- ◆ Stable between end of April and end of August 2016
- ◆ Should be equal to 0

Not nominal conditions: the current depends on the voltage difference between the cathode and BK

Residual current vs Plane-BK voltage difference

IRFU

- ◆ Normal operation for DC4:
 - $V_{cath} = 1675 \text{ V}$
 - $V_{BK} = 900 \text{ V}$
- ◆ Compromise in 2016:

$$V_{cath} = 1625 \text{ V}$$
 $V_{BK} = 1325 \text{ V}$

DC4 repair

- ◆ Fix the problem : chamber must be opened
- ◆ Proposal: immediately after the 2016 run
 - During repair: exchange the 32 internal hotlink cables, as done for the external ones in 2016.

Unfortunately, NO manpower to perform the repair!

What is the status?

DC04V BK V/I

Leakage current (much smaller) in Y plane

DC04Y Plane V/I

Much lower current, in 2016 use V_{BK} = 1200 (I = 0.6 μ A) - with linear dependence

Repair of DC04 should be planned following the 2018 Drell-Yan run

DVCS run 2017 Status of Saclay DCs (by Charles J. Naim)

- DC04 ←
- DC00 and DC01

Efficiency for DCs at the nominal tension

DC0 plans	нт	Efficiency
DC00X1 DC00X2	1700 V	93.8 % 87.5 %
DC00Y1 DC00Y2	1700 V	95.6 % 95.4 %
DC00U1 DC00U2	1700 V	90.5 % 89.6 %
DC00V1 DC00V2	1700 V	92.1 % 92.2 %

DC1 plans	НТ	Efficiency
DC01X1 DC01X2	1700 V	93.4 % 94.4 %
DC01Y1 DC01Y2	1700 V	96.2 % 97.2 %
DC01U1 DC01U2	1700 V	91.0 % 86.0 %
DC01V1 DC01V2	1700 V	87.8 % 90.0 %

DC4 plans	HT	Efficiency
DC04X1 DC04X2	1700 V	95.4 % 94.4 %
DC04Y1 DC04Y2	1700 V	97.4 % 97.4 %
DC04U1 DC04U2	1700 V	93.4 % 94.0 %
DC04V1 DC04V2	1625 V	92.2 % 91.6%

Efficiency >= 90 % 85 % < Efficiency < 90 %

DC04X1/X2

Eff = 95.5%

DC04Y1/Y2

Eff = 97.5%

DC04U1/U2

Eff = 92.3%

Lower Eff. Due to DC04V Anode HV tuning (leakage)

 σ_u = σ_v ~ 390 μm – σ_{track} ~250 μm = 300μm Idem DC04Y, DC04U and DC04V

DC00X1/X2

Eff = 93.9%

DC00Y1/Y2

Eff = 96.4%

DC00U1/U2

Eff = 90.6%

DC00V1/V2

Eff = 92.2%

DC00X1/X2

Residual vs u

Residual vs v

$$\sigma_u = \sigma_v \sim 380 \ \mu \text{m} - \sigma_{\text{track}} \sim 250 \ \mu \text{m} = 280 \ \mu \text{m}$$

 $\sigma_{position}$ is OK - Idem DC00Y, DC00U and DC00V

DC01X1/X2

Eff = 93.4%

DC01Y1/Y2

Eff = 96.2%

DC01U1/U2

DC01V1/V2

Eff = 87.8%

DC01U1/U2

Residual vs u

Residual vs v

 $\sigma U1_u = \sigma U1_v \sim 320 \ \mu m$ $\sigma U2_u = \sigma U2_v \sim 380 \ \mu m$ $\sigma_{position}$ is OK - Idem DC01X, DC01Y

DC01V1/V2

Residual vs u

Residual vs v

u-resolution degraded due to shifted RT

DC01X/Y/V RT should be re-fitted

DVCS run 2017 Status of Saclay DCs (by Charles J. Naim)

- DC04X/DC04Y/DC04U/DC04V All OK
- DC00X/DC00Y/DC00U/DC00V All OK
- DC01X/DC01Y/DC01U/DC01V Refit RTs