- Current appeared in April 2016, was not there in 2015
- Stable between end of April and end of August 2016
- Should be equal to 0

Not nominal conditions: the current depends on the voltage difference between the cathode and BK

Residual current vs Plane-BK voltage difference

- Normal operation for DC4:
- $\mathrm{V}_{\text {cath }}=1675 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{BK}}=900 \mathrm{~V}$
- Compromise in 2016:

DC4 repair

- Fix the problem : chamber must be opened
- Proposal : immediately after the 2016 run
- During repair: exchange the 32 internal hotlink cables, as done for the external ones in 2016.

Unfortunately, NO manpower to perform the repair ! What is the status ?

DC04V Plane V/I

DCO4V BK V/I

Leakage current (much smaller) in Y plane

DC04Y Plane V/I

DC4-Y plane

Much lower current, in 2016 use $\mathrm{V}_{\mathrm{BK}}=1200(\mathrm{I}=0.6 \mu \mathrm{~A})$

- with linear dependence
- Repair of DC04 should be planned following the 2018 Drell-Yan run

DVCS run 2017 Status of Saclay DCs (by Charles J. Naim)

- DC04
- DC00 and DC01

Efficiency for DCs at the nominal tension

DC0 plans	HT	Efficiency
DC00X1	1700 V	93.8% DC00X2
DC00Y1		
DC00Y2	1700 V	95.6% 95.4%
DC00U1	1700 V	90.5% 89.6%
DC00U2	1700 V	92.1% DC00V1 DC00V2

DC1 plans	HT	Efficiency
DC01X1	1700 V	93.4% DC01X2
DC01Y1		
DC01Y2	1700 V	96.2% 97.2%
DC01U1	1700 V	91.0% DC01U2
DC01V1	1700 V	87.8%
DC01V2	90.0%	

DC4 plans	HT	Efficiency
DC04×1	1700 V	95.4% DC04 24.4%
DC04Y1	1700 V	97.4% DC04Y2
DC04U1	1700 V	93.4% DC04U2
DC04V1	1625 V	92.2% DC04V2

Efficiency >=90\%
$85 \%<$ Efficiency < 90%

DC04X1/X2
Eff $=95.5 \%$

DCO4XZ2_: Efficiency-Background $(6 \sigma)=94.46 \pm 0.05 \%$

DC04X1__: Emiciency-Background (6s) $=95.48 \pm 0.04 \%$

DC04X1__: $\mathrm{R}_{\mathrm{vx}} \mathrm{T}$

DC04Y1/Y2
DC04Y1 _ : Efficiency-Background ($6 \mathrm{\sigma})=97.48 \pm 0.03 \%$

DC04Y2_: Effolency-Background ($6 \boldsymbol{\sigma}$) $=97.42 \pm 0.03 \%$

Eff $=97.5 \%$

DC04Y1__: Efriciency-Background $(68)=97.48 \pm 0.03 \%$

DC04Y2_: Efficiency-Background $(68)=97.42 \pm 0.03 \%$

DC04Y1__: R vx. T

DC04Y2__Rv. T

DC04U1/U2
DC04U1 __: Efficiency-Background (60) $=99.49 \pm 0.05 \%$

DC04U2 _ : Efflolency-Background (6a) $=94.01 \pm 0.06 \%$

Eff = 93.5\%

DC04U1__: Emiency-Background (6s) $=93.49 \pm 0.06 \%$

DC04U1 : R vs. T

DC04U2 : R vs. T

DC04V1/V2

DC04V2 _ : Emciency-Background (6a) $=91.6 \pm \pm 0.07 \%$

Eff $=92.3 \%$
DC04V1__ : Efficiency-Background (68) $=92.29 \pm 0.06 \%$

DC04V1__: Rvx. T

DC04V2_: Rvs. T

Lower Eff. Due to DC04V Anode HV tuning (leakage)

DC04X1__ Residuals in bins of $u(\mathrm{~cm})$

DC04X2 : Residuals in bins of u(cm)

DC04X2_: Residuals in bins of u(cm)

DC04X1 : Residuals in bins of $\mathrm{v}(\mathrm{cm})$

DC04X1__ Residuals in bins of $\mathrm{v}(\mathrm{cm})$

DC04X2 _ Residuals in bins of $v(\mathrm{~cm})$

$$
\sigma_{u}=\sigma_{v} \sim 390 \mu \mathrm{~m}-\sigma_{\text {track }} \sim 250 \mu \mathrm{~m}=300 \mu \mathrm{~m}
$$

Idem DC04Y, DC04U and DC04V

DC00X1/X2

DCOOXZ__: Efficiency-Eackground ($6 \boldsymbol{6}$) $=87.50 \pm 0.10 \%$

Eff $=93.9 \%$

DC00X1__: Emciency-Aackground (6c) $=93.88 \pm 0.08$ s

DC00X1__: R v. T

DCOOY1/Y2
$\mathrm{Eff}=96.4 \%$

DCOOY2_: Effciency-Background (6б) $=96.34 \pm 0.07 \%$

DCoor1__: Efriciency-Background (68) $=95.43 \pm 0.07 \%$

DC00Y1_: Rvx. T

DC00Y2__: R v. T

DCOOU1/U2

DCOOU2__ Efficiency-Background $(6 \sigma)=89.60 \pm 0.10 \%$

Eff $=90.6 \%$

DC00U1 _ : Efliciency-Background (6s) $=90.59 \pm 0.09 \%$

$\mathrm{Eff}=89.6 \%$

DC00U1__ R vs. T

DC00U2 : R vs. T

DC00V1/V2

$E f f=92.2 \%$

DC00V1__: Emiciency-Background (68) $=92.18 \pm 0.08 \%$

DC00V2__: Emiciency-Background $(68)=92.29 \pm 0.08 \%$

DC00V1 : R va. T

DC00V2_: R v. T

DC00X1/X2

Residual vs u
Residual vs v

DC00X1__: Residuals in bins of $u(c m)$

DC00X2__: Residuals in bins of $\mathrm{v}(\mathrm{cm})$

$$
\sigma_{u}=\sigma_{v} \sim 380 \mu \mathrm{~m}-\sigma_{\text {track }} \sim 250 \mu \mathrm{~m}=280 \mu \mathrm{~m}
$$

$\sigma_{\text {position }}$ is OK - Idem DCOOY, DCOOU and DCOOV

DC01X1/X2
$E f f=93.4 \%$

DC01X1 _ : Efficiency-Background $(\mathbf{6 \sigma})=98.40 \pm 0.08 \%$

DCO1X2 _ : Efficiency-Eackground ($6 \boldsymbol{6}$) $=94.42 \pm 0.07 \%$

DC01X1__ Efficiency-Background (Es) $=93.40 \pm 0.08 \%$

DC01X2_- Emiciency-Background (68) $=94.42 \pm 0.07 \%$

DC01X1_: Rvs. T

DC01X2 : R vx. T

DC01Y1/Y2

DCO1Y2_: Effoiency-Background (6σ) $=97.22 \pm 0.05 \%$

Eff $=96.2 \%$

DC01Y1__: Efriciency-Background (68) $=95.23 \pm 0.06 \%$

DC01Y2_: Emciency-Background $(66)=97.22 \pm 0.06 \%$

DC01Y1_: Rvx. T

DC01U1/U2
DC01U1__: Efficiency-Background $(6 \sigma)=92.4 \pm \pm .10 \%$

DCO1U2__ Efficiency-Background (EO) $=87.26 \pm 0.12 \%$

$\mathrm{Eff}=92.4 \%$

DCO1U1__: Emiciency-Background (6d) $=92.41 \pm 0.10 \%$

$\mathrm{Eff}=87.3 \%$
DCO1U2__ Emiliency-Background (6s) $=87.26 \pm 0.12 \%$

DC01U2__: Rvs T

DC01V1/V2
$E f f=87.8 \%$

DC01V2_: Effloiency-Background (6σ) $=50.09 \pm 0.09 \%$

DC01V1__: Effolency-Background (6σ) $=87.81 \pm 0.10 \%$

DC01V1_: Ru. T

DC01V2_: Rvs. T

DC01U1/U2

DC01U1__Residuals in bins of $\mathrm{v}(\mathrm{cm})$

DC01U2 _ : Residuals in bins of $v(c m)$

DC01U2__: Residuals in bins of $v(c m)$

$$
\sigma U 1_{u}=\sigma \mathrm{U} 1_{v} \sim 320 \mu \mathrm{~m} \quad \sigma \mathrm{U} 2_{u}=\sigma \mathrm{U} 2_{\mathrm{v}} \sim 380 \mu \mathrm{~m}
$$

$$
\sigma_{\text {position }} \text { is OK - Idem DCO1X, DCO1Y }
$$

DC01V1/V2

DC01V1__: Residuals in bins of $u(\mathrm{~cm})$

DC01V2 _ Residuals in bins of $u(\mathrm{~cm})$

DC01V2 _ : Residuals in bins of u(cm)

DC01V1 : Residuals in bins of $\mathrm{v}(\mathrm{cm})$

DC01V1_: Residuals in bins of $\mathrm{v}(\mathrm{cm})$

DC01V2 : Residuals in bins of $\mathrm{v}(\mathrm{cm})$

DC01V2__: Residuals in bins of $\mathrm{v}(\mathrm{cm})$

u-resolution degraded due to shifted RT

- DC04X/DC04Y/DC04U/DC04V All OK
- DCOOX/DCOOY/DCOOU/DCOOV All OK
- DC01X/DC01Y/DC01U/DC01V Refit RTs

