Monitoring of 2018 radiation dose

- Main players: Angelo from COMPASS and Heinz Vincke from Radio Protection. FLUKA simulations. Meetings with Heinz Oct. 19 & Nov 3.
- Max. allowed integrated dose is 1 mSv / year in public area, monitors PMSG824 for photons and PMSN824 for neutrons (Christophe added them to DCS).
 - 2015 measured: 0.745 mSv
 - FLUKA with 2e14 pions on target: 0.75 mSv
- Max. allowed instantaneous dose is 2.5µSv / hour in low-occupancy areas (<400h/y), this includes the street! We are above this level.
- 7% more beam days in 2018. To not exceed radiation limit:
 1.) Decrease beam intensity, in particular in the beginning during commissioning
 - 2.) Improve shielding. Very recent conclusions:
 - Extra shielding on top and side of absorber does not improve radiation level. We will in particular forget about the polyethylene, which is anyway a safety concern (flammability)
 - Only an "umbrella" that covers also (part of) the target is effective.

Michela about 2015 run:

- We were running at higher intensity $(4.2*10^8)$ in the first periods.
- From period 5 we started to decrease a bit intensity running at $(= 2.8 \times 10^{6})$ many and data taking was more stable.
- $\leq 3.8*10^{8}$ pions/spills, and data taking was more stable.

	2015	2018
beam period	April 27 - Nov 16	April 9 - Nov 11
days	203	217
physics days (w/o MD)	106	140 (projected)
SPS efficiency	86%	
average beam intensity [pions/spill]	3.9E+08	
good spills delivered to COMPASS	486,476	217/203 x 486,476= 520,026 (projected)
pions on COMPASS target	1.9E+14	
integrated dose	0.75 mSv	

Heinz Vincke's FLUKA: side view

Lots of backward radiation, mostly high-energetic neutrons

Heinz Vincke's FLUKA: top view

26

Heinz Vincke's FLUKA: front view

Annaul dose in mSv/h (2E14 pions on target) [1100cm < z <1500cm]

November 7, 2017

Heinz Vincke's FLUKA: front view zoom

Dose rate in uSv/h (1e9/spill, cycle = 33.6s) [-591 cm < z < 22cm]

Heinz Vincke's FLUKA: different shieldings

ground floor: dose rate in uSv/h (1e9/spill) [-250cm < x < -150cm] [-600cm < z <600cm]

November 7, 2017

1500

1000

500

-1500

-1000

-500

0

2018 beam conditions

- Simulation: 1e9 pions / spill, 1 spill / 33.6 sec, 2.95e7 pions / sec
- 2015: 3.9e8 pions /spill
- **2017**: 1 spill / 23 sec
- 2018: 3.8e8 pions / spill, with 2017 spill frequency: 1.65e7 pions / sec
- Simulation overestimates by factor of 2.95/1.65 = 1.8

ground floor: dose rate in uSv/h (1e9/spill) [-250cm < x < -150cm] [-600cm < z <600cm]

A new target umbrella?

⁶Li absorber

DC0 efficiency & MM rates 2014 vs. 2015

⁶LiCO₃ : principle

Extra slides

Proposal for a secondary nickel target in 2018 (Alexey Gushkov)

- 2015 statistics for M>5 GeV (we cannot use cut >4.3 or >4.5 due to worse mass resolution for tungsten plug.):
 ~600 evts in Al and ~11,000 events in the first 15cm of W.
 Mass resolution for DY >5 GeV in Al is about 5 cm, for J/psi 7-8 cm.
- Assuming 2 times larger integrated luminosity in 2018 we would expect for 10 cm Ni target:

- Ni 10cm : 4,000 events in Ni and 12,500 in the first 15cm of W . With this statistics we can expect the statistical accuracy for Ni in the region 0.3 < x2 < 0.4 of about 6.5%, which is comparable with the EMC effect itself, and ~20% at x2>0.4.

- Ni 5cm: 2,200 events in Ni and 16,700 in the first 15 cm of W.

Beam intensity: no reduction towards the end (despite radiation alarm)

2018 additional shielding (outdated...)

Angelo's FLUKA simulations October 2017

configu ration	Mean dose in control room (µSv/h)	Dose Reducti on	Additional shielding on top and Saleve side of hadron absorber: 14cm polyethylene (only Saleve), 80cm concrete note				
				normalized to Fi-14			
Final-13	5,04 ± 0,64	0%	configuration of 2015 run – secondary Al	147%			
Final-14	3,44 ± 0,36	-31,7%	Final-13 + additional shield	100%			
Final-15	4,76 ± 0,67	-5.5%	Final-14 + tungsten target	138%			
Final-16	4,83 ± 0.69	-4.2%	Final-14 + 10cm nickel target	140%			
Final-17	3,85 ± 0,50	-23,6%	Final-14 + 5cm nickel target	112%			
Final-18	3,56 ± 0,39	-29,4%	Final-14 + 5cm nickel target, begin II layer	103%			

40k prima	ries →	config ration	Mean dose in control room (µSv/h)	Dose Reducti on		n	ote		
		Final-1	3 5,04 ± 0,64	0%	conf targe	iguration of 2018 et included – no	5 run – secondary Al		
		Final-14	1 3,44 ± 0,36	-31,7%	Fina	II-13 + additional	shield		
		Final-1	5 4,76 ± 0,67	-5.5%	Fina	II-14 + tungsten f	target		
		Final-10	6 4,83 ± 0.69	-4.2%	Fina	II-14 + 10cm nicl	kel target		
		Final-1	7 3,85 ± 0,50	-23,6%	Fina	II-14 + 5cm nicke	el target		
80k prima	ries	Final-18	3 3,56 ± 0,39	-29,4%	Fina	II-14 + 5cm nicke	el <mark>target, begin II layer</mark>	1,600k p	rimaries
configurati on Final-13 Final-14 Final-14ntnv		urati	Mean dose in control room (µSv/h)	Dose Reducti	ion	Mean dose in CR – BW (uSv/h)	note		
		3	3,77 ± 0,04	0%		3,74 ± 0,02	secondary Al target	included – no	
		4	3,54 ± 0,04	-6,1%)	3,42 ± 0,02	Final-13 + additional	l shield	
		3,50 ± 0,05	-7,2%)	3,44 ± 0,02	Final-14, no vertex,	no target		
	Final-1	5	3,82 ± 0,05	1,3%		3,91 ± 0,02	Final-14 + tungsten	target	
	Final-16	6	3,50 ± 0.05	-7,2%)	3,60 ± 0,02	Final-14 + 10cm nic	kel target	
	Final-1	T hy	3,52 ± 0,06	-6,6%)	3,51 ± 0,02	Final-14 + 5cm nick	el target	
	Final-18	8	3,55 ± 0,04	-5,8%)	3,58 ± 0,02	Final-14 + 5cm nicke II layer	el target, begin	
	Final-19	9	3,72 ± 0,07	-1,3%)	3,75 ± 0,02	Final-18 + 10cm nic beginning of II layer	kel target	

- Purpose: absorption of neutrons, which might be captured and emit $\gamma \rightarrow e+e$ -
- Installed after 2014 DY run because of suffering efficiency in DC0.

Configuration of 2015 run

View from Jura side

View from Saléve side

05 / Nov. / 2015

Genki Nukazuka 3 / 12

05 / Nov. / 2015

Saleve side

Genki Nukazuka 14/12

2015 setup (Al target missing)

C.Riedl, Report from TC

November 7, 2017

Reference runs before / after 6Li installation

Bibliography: talks by AM, Stephane or Genki in spring & summer 2015

http://www.compass.cern.ch/compass/collaboration/2015/co_1507/pdf/DCs_Magnon_cm_150716.pdf https://espace.cern.ch/na58-mgt-tb/Technical%20Board/Lists/Agenda/Attachments/653/DCs_Saclay_tb_150204.pdf https://espace.cern.ch/na58-mgt-tb/Technical%20Board/Lists/Agenda/Attachments/662/Platchkov-TB-150401_1.pdf https://espace.cern.ch/na58-mgt-tb/Technical%20Board/Lists/Agenda/Attachments/679/DC00_01_04_tb_150708.pdf https://twiki.cern.ch/twiki/pub/Compass/Drell_Yan/Subgroupmeeting/Genki_Efficiency_vs_Hit_rate_DC00.pdf

After removal of 2nd layer of Li sheet (June 10, 2015)

