Future Accelerators at the High Energy Frontier

Professor Emmanuel Tsesmelis

Accelerator Physics Graduate Course John Adams Institute for Accelerator Science 15 February 2017

Aims of Lecture

- Present overview of various future collider projects, including beam parameters.
- Compare potential science goals & reach at each future collider.
- Characterize required R&D to be carried out prior to construction.
- Juxtapose possible timelines of each project.

The Three Frontiers

Colliders – Energy vs. Time

M. Tigner: "Does Accelerator-Based Particle Physics have a Future?" Physics Today, Jan 2001 Vol 54, Nb 1

The Livingston plot shows a saturation effect!

Practical limit for accelerators at the energy frontier:

Project cost increases as the energy must increase!

Cost per GeV C.M. proton has decreased by factor 10 over last 40 years (not corrected for inflation)!

Not enough: Project cost increased by factor 200!

New technology needed...

Why Build Colliders?

- Want to see constituents of matter .
- Smash matter together and look for the building blocks.
- Take small pieces of matter:
- accelerate them to very high energy
- crash them into one another

$$\longrightarrow E = mc^2 = \gamma m_0 c^2$$

Higher energy produces more massive particles.

When particles approach speed of light, they get more massive but not faster.

Only a tiny fraction of energy converted into mass of new particles (due to energy and <u>momentum</u> conservation)

Entire energy converted into the mass of new particles

Scientific Challenge: to understand the very first moments of our Universe after the Big Bang

15 thousand million years

The big Bulk

1 thousand million years

300 thousand years

e.

(ATLAS, CMS...)

3 minutes

10⁻⁵ seconds

10⁻¹⁰ seconds

10-34 seconds

10⁻⁴³ seconds

10³² degrees

radiation

particles

quark

electron

anti-quark

carrying

heavy particles

the weak force

10²⁷ degrees

proton

neutron

meson

e helium

lithium

hydrogen

deuterium

10¹⁵ degrees

positron (anti-electron)

10¹⁰ degrees

10⁹ degrees

6000 degrees

Electro-weak phase transition

QCD phase transition

(ALICE, ATLAS, CMS...)

LHC will study the first 10⁻¹⁰ -10⁻⁵ seconds...

3 degrees K

Collider Characteristics

Hadron collider at the frontier of physics

- huge QCD background
- not all nucleon energy available in collision

Lepton collider for precision physics
 well defined initial energy for reaction
 Colliding point like particles

Candidate next machine after LHC

□ e⁺e⁻ collider

- energy determined by LHC discoveries
- study in detail the properties of the new physics that the LHC finds

Circular versus Linear Collider

Circular Collider many magnets, few cavities, stored beam higher energy → stronger magnetic field → higher synchrotron radiation losses (E⁴/m⁴R)

Linear Collider

few magnets, many cavities, single pass beam higher energy → higher accelerating gradient higher luminosity → higher beam power (high bunch repetition)

Today's Accelerators

Hadron Colliders

• Protons are composite particles

- Only ~10% of beam energy available for hard collisions producing new particles
 - □ Need *O*(10 TeV) Collider to probe 1 TeV mass scale
 - Desired high energy beam requires strong magnets to store and focus beam in reasonable-sized ring.
- Anti-protons difficult to produce if beam is lost
 - Use proton-proton collisions instead
 - Demand for ever-higher luminosity has led LHC to choose proton-proton collisions
 - Many bunches (high bunch frequency)
 - Two separate rings that intersect at select locations

Today's Accelerators

- Lepton Colliders (e+e-)
 - Synchrotron radiation is the most serious challenge
 - Emitted power in circular machine is

$$P_{SR}[kW] = \frac{88.5 E^4 [GeV] I[A]}{\rho[m]}$$

- For a 1 TeV CM energy Collider in the LHC tunnel with a 1 mA beam, radiated power would be 2 GW
 - □ Would need to replenish radiated power with RF
 - **•** Remove it from vacuum chamber
- Approach for high energies is Linear Collider (ILC,CLIC)

THE LHC AND ITS UPGRADES

CERN Accelerator Complex

A New Era in Fundamental Science

HCb

CERN Prévessin

/leyrin 🔍

ALICE

ALIC

Exploration of a new energy frontier in p-p and Pb-Pb collisions

CMS

LHC ring: 27 km circumference

LHC Main Bending Cryodipole

The LHC Experimental Challenge

LHC Machine Parameters

pp collisions at $\sqrt{s} = 14 \text{ TeV}$ bunch crossing interval 25 nanoseconds pp interaction rate 10° interactions/s

High Interaction Rate

data for only ~100 out of the 40 million crossings can be recorded per second First trigger decision will take ~2-3 μ s \Rightarrow electronics needs to store data locally (pipelining)

Large Particle Multiplicity

~ <20> superposed events in each crossing ~ 1000 tracks emerge rinto the detector every 25ns need highly granular detectors ⇒ large number of channels

High Radiation Levels

⇒ radiation hard detectors and electronics

Selection of 1 in 10,000,000,000,000

Beam Focusing High-Field SC Magnets

- 13 T, 150 mm aperture quadrupoles for the inner triplet:
 - LHC: 8 T, 70 mm.
- More focus strength, β* as low as 15 cm (55 cm in LHC).
 - In same scheme even β* down to 7.5 cm considered.
- Dipole separators capable of 6-8 T with 150-180 mm aperture (LHC: 1.8 T, 70 mm)

Goal:

Enable focusing of the beams to $\beta^{*}=0.15$ m in IP1 and IP5.

HL-LHC: In-kind Contribution and Collaboration for Design and Prototypes

The Tevatron at FERMILAB

The Tevatron

0

TEVATRON

IHI

BEYOND THE LHC CIRCULAR COLLIDERS

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

• *pp*-collider (*FCC-hh*) defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- *p-e* (*FCC-he*) option
- 80-100 km infrastructure in Geneva area

CEPC+SppC

- For about 8 years, we have been talking about "What can be done after BEPCII in China"
- Thanks to the discovery of the low mass Higgs boson, and stimulated by ideas of Circular Higgs Factories in the world, CEPC+SppC configuration was proposed in Sep. 2012

Site

Preliminary selected: Qinhuangdao (秦皇岛)

Strong support by the local government

CEPC+SppC Current Design

CEPC Basic Parameters:

- Beam energy ~120 -125 GeV
- Synchrotron radiation power ~50 MW
- > 50/70 km in circumference

SppC Basic Parameters:

- Beam energy ~50-90 TeV
- > 50/70 km in circumference
- Needs B_{max} ~20T

CEPC circumference determined later based on cost estimate.

BEYOND THE LHC LINEAR COLLIDERS

ILC (and the Compact Linear Collider CLIC)

CLIC

•2-beam acceleration scheme at room temperature
•Gradient 100 MV/m
•√s up to 3 TeV
•Physics + Detector studies for 350 GeV - 3 TeV Linear e⁺e⁻ colliders Luminosities: few 10³⁴ cm⁻²s⁻¹

ILC

- •Superconducting RF cavities (like XFEL)
- •Gradient 32 MV/m
- • $\sqrt{s} \le 500 \text{ GeV}$ (1 TeV upgrade option)
- •Focus on ≤ 500 GeV, physics studies also for 1 TeV

The International Linear Collider

shield wall removed

CLIC Implementation

Note: the design is currently being reoptmised, e.g. to include 350 GeV as the first stage ← Possible lay-out near CERN

♦ CLIC parameters

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	1500	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		312	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	100	100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.3	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.7	1.4	2
Main tunnel length		km	11.4	27.2	48.3
Charge per bunch	Ν	10 ⁹	3.7	3.7	3.7
Bunch length	σ_z	μm	44	44	44
IP beam size	σ_x/σ_y	nm	100/2.6	$\approx 60/1.5$	\approx 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm		660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	660/25		
Estimated power consumption	Pwall	MW	235	364	589

For CLIC & ILC - Similar World Projects: Channel Tunnel

50Km

Other Technological Challenges

The final focusing quadruple should be stabilized to 0.15 nm

for frequencies about 4 Hz

Other Technological Challenges

MUON ACCELERATORS

Physics with Muon Beams

Neutrino Sector

 $\mu^{\dagger} \rightarrow e^{\dagger} V_{e} \overline{V}_{\mu} \Rightarrow 50\% V_{e} + 50\% \overline{V}_{\mu}$ $\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Rightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$

Produces high energy neutrinos

- Decay kinematics well known
- $v_e \rightarrow v_\mu$ oscillations give easily detectable wrong-sign μ
- Energy Frontier
 - Point particle makes full beam energy available for particle production
 - □ Couples strongly to Higgs sector
 - Muon Collider has almost no synchrotron radiation
 - □ Narrow energy spread
 - □ Fits on existing laboratory sites

Muon Beam Challenges

- Muons created as tertiary beam $(p \rightarrow \pi \rightarrow \mu)$
 - Low production rate
 - Need target that can tolerate multi-MW beam
 - Large energy spread and transverse phase space
 - Need solenoidal focusing for the low-energy portions of the facility
 - (solenoids focus in both planes simultaneously)
 - Need acceptance cooling
 - High-acceptance acceleration system and decay ring
- Muons have short lifetime (2.2 μs at rest)
 - Puts premium on rapid beam manipulations
 - Presently untested ionization cooling technique
 - □ High-gradient RF cavities (in magnetic field)
 - Fast acceleration system
- Decay electrons give backgrounds in Collider detectors and instrumentation & heat load to magnets

Muon Collider (?)

Plasma Accelerators

The Sub-Fermi Scale (2015-2050)?

