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Beam Transport

Beam transport and matching

Single turn injection

Multi-turn injection

Single turn extraction

Multi-turn extraction



Equations of transverse motion 
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In previous lectures it was shown that the equations of motion of a charged particle 

in the paraxial approximation can be reduced to the linear Hill’s equation
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The solutions of these equations can be written in terms of the optics functions 

(amplitude and phase)
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or equivalently in terms of the principal trajectories
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No assumption is made about the periodicity of the line.



Principal trajectories (I)

The principal trajectories are two particular solutions of the homogeneous Hill’s 

equation
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which satisfy the initial conditions

C(s0) = 1; C’(s0) = 0; cosine-like solution

S(s0) = 0; S’(s0) = 1; sine-like solution

The general solution can be written as a linear combination of the principal trajectories

)(')()( 00 sSysCysy 

))(sin)((cos
)(

)( 0

0

ss
s

sC 





)(sin)()( 0 sssS 

We can express amplitude and phase functions in terms of the principal trajectories



Principal trajectories (II)

As a consequence of the linearity of Hill’s equations, we can describe the evolution 

of the trajectories in a transfer line or in a circular ring by means of linear 

transformations
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This allows the possibility of using the matrix formalism to describe the evolution 

of the coordinates of a charged particles in a transfer line, e.g.
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Matrix formalism for transfer lines (I)

For each element of the transfer line we can compute, once and for all, the 

corresponding matrix and the propagation along the line will be the piece-wise 

composition of the propagation through all the various elements
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Notice that it works equally in the longitudinal plane, e.g.
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thin lens quadrupole associate to an RF cavity of voltage V and length L



In terms of the amplitude and phase function the transfer matrix will read

where 0 , 0 and the phase 0 are computed at the beginning of the segment of 

transfer line

We still have not assumed any periodicity in the transfer line. 

If we consider a periodic machine the transfer matrix over a whole turn reduces to
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Matrix formalism for transfer lines (II) 



Optics functions in a transfer line 

While in a circular machine the optics functions are uniquely determined by the 

periodicity conditions, in a transfer line the optics functions are not uniquely given, but 

depend on their initial value at the entrance of the system.

We can express the optics function in terms of the principal trajectories as 
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This expression allows the computation of the propagation of the optics function 

along the transfer lines, in terms of the matrices of the transfer line of each single 

element, i.e. also the optics functions can be propagated piecewise from
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Examples 
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In a drift space

The  function evolve like a parabola as a function of the drift length.

In a thin focussing quadrupole of focal length f = 1/KL

The  function evolve like a parabola in terms of the inverse of focal length 











1

01

KL
M


















































0

0

0

2 12)(

01

001













KLKL

KL











10

1 s
M



Matching of optics function in a transfer line

A typical problem in the design of transfer line comes from the requirement of 

matching the optical function at the end of the transfer line with a set of given optics 

function, e.g. the optic function of a ring at the injection point



Diamond LINAC to booster transfer line

Optics functions 

from the LINAC

(Twiss parameters 

of the beam)

Booster optics 

functions at the 

injection point



Matching of optic function in a transfer line

Use,newltb

Match,betx=10.0,alfx=-0.5,bety=3.0,alfy=-0.5,dx=0.0,dpx=0.0

Constraint,#E,betx=11.8808,alfx=-2.89418,bety=3.66418,alfy=0.956848

Constraint,#E,dx=0.050281,dpx=0.00605976,dy=0,dpy=0

Constraint,newltb,betx<51,bety<51

Vary,L2BQUAD1[k1],step=0.00001,lower=-6.0000,upper=6.0000

Vary,L2BQUAD2[k1],step=0.00001,lower=-6.0000,upper=6.0000

Vary,L2BQUAD3[k1],step=0.00001,lower=0.0000,upper=6.0000

Vary,L2BQUAD4[k1],step=0.00001,lower=-6.0000,upper=0.0000

Vary,L2BQUAD5[k1],step=0.00001,lower=0.0000,upper=6.0000

Vary,L2BQUAD6[k1],step=0.00001,lower=0.0000,upper=6.0000

Vary,L2BQUAD7[k1],step=0.00001,lower=-6.0000,upper=0.0000

Vary,L2BQUAD8[k1],step=0.00001,lower=0.0000,upper=6.0000

Simplex,calls=500000,tolerance=1E-20

migrad,calls=24000,tolerance=1e-9

EndMatch

A mad8 example for matching the optics functions to some desired value at the end 

of the transfer line

at start
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Transfer line example: Diamond LTB



Achromatic and Isochronous lines

A transfer line is achromatic if the dispersion and its derivative are zero at the end 

of the line, if they are zero at the beginning of the line

A transfer line is isochronous if all trajectories have the same path length, for any x0, 

x’0 and dp/p0.
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If the transfer line is already achromatic, it must satisfy in addition
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If D(si) = 0; D’(si)=0

then D(se) = 0; D’(se) = 0

This implies (K. Steffen CAS 85-19) for any trajectory with dp/p0 = 0 that 
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momentum compaction factor (for rings)

R56 in transfer lines



Example:  bunch compressors

A beam transport line made of four equal dipole with opposite polarity is an example 

of achromatic transfer line which is non-isochronous. The different time of flight (or 

path length) for different energies can be used to compress the bunch length 
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z

‘chirp’

V=V0sin(ωt)
Δz = R56 ΔE/E

An energy chirp is 
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compression to 
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Single turn injection in a circular accelerator

The beam coming from a transfer line is deflected by a septum magnet towards the 

central orbit of the circular accelerator. This deflection can be many tens of mrads

At the location where the trajectory intersects the central orbit a kicker magnet kicks 

the beam on axis, removing the residual angle left by the septum (few mrads)

The presence of intermediate magnets (e.g. quadrupoles) between the septum and 

the kicker has to be taken into account in the definition of the deflection angles

The optics function should be matched;

The beam is 

injected on axis



Pulsed magnets for single turn injection

The beam is deflected a pulsed septum magnet and a fast kicker magnet which 

rises in a time between bunches (50ns)

The kicker pulse should be off when the injected bunch has completed one turn in 

the ring otherwise it will kick the beam out: the accumulation of current is limited to 

one turn;

The incoming beam is deflected by a septum magnet which is a pulsed magnet. The 

pulse can be long (many tens of s) the field should not leak into the aperture where 

the beam will circulate



Single turn extraction

The single turn extraction works with a principle very similar to the single turn injection: 

A fast kicker deflects the beam from the central orbit. The kicker deflection angle is 

small and the beam still lies in the aperture of the machine until it enters a magnetic 

septum which deflects it a large angle beyond the yoke of the next magnet
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If many elements are present between kicker and septum, the trajectory of the kicked 

bunch should be computed in detail. The location of the septum should be separated 

by 90 degrees phase advance to maximise the effect of the kicker.



Single turn extraction with pre-septum

To relax the specifications on the kicker magnet it is possible to envisage the use of 

more than one septum magnet, e.g. diamond booster which has a single turn 

extraction system with a kicker, pre-septum and septum
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Multi-turn Injection in electron machines
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In the multi-turn injection scheme, an electron beam is injected in a circular 

accelerator with a system made of a septum magnet and four kickers that create a 

local closed orbit bump.

The bump is created when the injected beam arrives and it is switched off to avoid 

the injected beam hitting the back of the septum. Radiation damping will put the 

injected beam on axis to merge with the stored beam

After several damping times, the bump is energised again and a new pulse can be 

injected in the same way. 

The sequence is repeated until the nominal current is reached

The beam is 

injected off axis



Multi-turn Injection at Diamond

The closed orbit bump is completely switched off after two turns. The injected beam 

clears the septum.



Injection optimisation

If the pulse is too short we might not kick all the incoming bunch train in the same 

way, which may result in a poor injection efficiency

The kickers and the septum magnet must be fired simultaneously, synchronously 

with the incoming bunch.

The pulse length has to be optimised to achieve full injection efficiency

If the kicker pulse is too long the beam might scrape the back of the septum: the 

optimisation depends on the betatron tune value. 



Kickers pulse comparison

The orbit bump must be closed, i.e. the kicker’s pulse must be the same 

otherwise we will perturb the stored beam when we are injecting and the injection 

efficiency can be poor

The residual oscillations 

induced by a non perfectly 

closed bump must be minimised

The leakage of the septum field 

is also carefully reduced



Mismatched Injection

To make use of the whole acceptance a mismatched injection scheme is used.

The beta function of the injected beam (at the end of the transfer line) is not 

matched to the beta function of the ring at the injection point. The beta functions 

at injection are chosen on the basis of geometrical considerations to fit better the 

machine acceptance

pink: stored beam displaced; red: injected beam; blue: ring acceptance; grey: septum



Multi-turn Injection for protons

In proton machines the transverse radiation damping 

time is very long and cannot be used to ease the 

injection process.

The bump is programmed in order to fill the whole 

acceptance of the machine (phase space painting)

Some emittance dilution always occurs. Space 

charge forces limits the injection.

Charge exchange injection is used as an alternative 

an more effective injection method



Charge Exchange Injection

H- and protons are bent in opposite directions by a dipole B1, they travel 

together in the drift and they both go through a foil F. The foil strips the electron 

from the H- and the second bending B1 will select stripped particles with the 

correct charge to stay in the ring. 

To avoid crossing the foil many times a closed orbit bump is used. The bump is 

programmed to fill the whole acceptance.



Multi-turn resonant extraction

Placing the tune close to a third order resonance and powering a sextupole we can 

force the particle to move close to the separatrix of a third order resonance in the 

horizontal plane.

The amplitude of the particles locked on 

the resonance will grow, and can cross 

the septum and be extracted

The strength of the resonance and the 

speed with which the beam reaches the 

separatrix can be adjusted so that the 

extraction can be very slow



Multi-turn extraction using resonance islands

Powering octupoles creates stable 

resonance island where particles can be 

trapped. The bunch can be split into

N+1 bunchlets (N is the order of the 

resonance)

By changing the tune adiabatically 

(slowly w.r.t. to the beatron motion)

the island can be moved in phase space

and can be extracted with a N-turn 

extraction scheme using an orbit bump

Can be done also using 3rd order 

resonance or others

Ref. CERN-SPS studies
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