

Preliminary discussions on the test of Q5.L6 above nominal current

Mirko Pojer

Beams Department Operation Group

From Layout database

D: 184909, Circuit version : 3	STUDY, Layout version : STUDY				
ower Converters in the Ci	rcuit		PC Loca	Rack Name/Slo	
RPHH.UA63.RQ5.L6B1 (MTF	F, TE-EPC Database)		UA63/0		
RPHH.UA63.RQ5.L6B2 (MTF	, TE-EPC Database)		UA63/0		
lagnets in the Circuit			Numb		
AQY			2		
Current Leads in the Circuit	ŧ				
DFLCS.A5L6.1					
OFLCS.A5L6.2					
OFLCS.A5L6.3					
lagnets per Power Conver	ter				
PHH.UA63.RQ5.L6B1			1		
Neminal	160 T/m	Lilliferente -	2000 4		
Nominal :		I Ultimate :	3900 A	LNin On I	20.0 4
Unset :	.0 A	Diverioad :	1.03 Tutumate A	P tot Mesoured :	00.0 A
. tot : Pomp Time :	.074 H	re tot :	10 932 A/m	R tot measured :	.000369 Onm
Camp Time :	120 V	max(di/dt) :	10.853 A/S	Time Constant :	01.001 8
I Boost :	799.V	U Coll :	3 370 V	II Peak Circ :	4 170 V
Varm Cable Verification :	.188 4	0.0011	5.570 V	o reak onc.	4.170 V
	•				
			1		
Nominal :	3610 A	LUItimate :	3900 A		
Offset :	.0 A	Overload :	1.03 * Lultimate A	I Min Op :	80.0 A
tot :	.074 H	R tot :	.000843 Ohm	R tot Measured :	.000400 Ohm
Ramp Time :	360.00 s	max(di/dt) :	10.833 A/s	Time Constant :	87.587 s
J leads :	.120 V	U Extr :	.000 ∨		
J Boost :	.799 V	U Coll :	3.370 V	U Peak Circ :	4.170 V
Varm Cable Verification :	~				
ircuit Parametere					
II CUIL Falanicicio					

CERN

Beam 2 -> 3750 A

Hardware feasibility_1

- PC-power part (V. Montabonnet)
- For the RQ5.L6 circuit, the PC is a RPHH type, equipped with 3 * 2kA sub-converters and a 4 kA DCCT
 - No problem from power side, being able to reach 6 kA
 - Only the I_hardware limit should be changed in the tunnel

DCCT (G. Hudson and M. Martino)

- The specifications of the 4 kA DCCTs are as follows:
 - 105% of nominal: continuous operation (accuracy/precision performance should be "nominal")
 - 110% of nominal: 5 seconds operation
 - "So, as your tests will be at 105%, the time at 4.2kA is unlimited" No limit from PC

Hardware feasibility_2

- Cables
- "Selon ma doc (schémas DC et cmdes WCC), l'intensité max est de 3.9 kA. La longueur du circuit est de 44m. La section est de 1000mm2; ce qui laisse un peu de marge pour aller plus haut. Il faudrait vérifier les aspects chute de tension et débit d'eau avant de passer à 6 kA le cas échéant et faire une ECR (?)"

No problem to operate at 4.2 kA

Performance aspects

Performance in SM18 (S. Lenaour)

Quench table for magnet 'SSS658' on bench TBD2											
	File	Test	Current	Location	TT821	MIITS	Comment	Result			
1	-	PT 4 Slow power abort check	310	-	4.4	0	OK.	OK			
2	A0605140719.he01	PT 5.2 1.5 KA Quench HF	1500	ExtMQY32	4.67	0.2	No alerts	OK			
3	A0605140829.na01	PT 6.1 Training 1	3686.5	ExtMQY34	4.6	1.92	No alerts	OK			
- 4	A0605141049.na02	PT 6.2 Training 2	3764	E-M-P12	4.66	2.04	ok	OK			
5	A0605141614.na03	PT 6.3 Training 3	3745	I-M-34	4.654	1.99		OK			
6	A0605141858.na04	PT 6.4 Training 4	3849	E-M-34	4.7	1.96		OK			
7	A0605142156.na05	PT 6.5 Training 5	3880.7	Ex_MQ_34	4.65	1.96	No AQA message	OK			
8	A0605150117.u01	PT 7 Magnet Trained	3900	-	4.65	0	OK	OK			
9	A0605150351.hg01	PT 10.1: Prov. Quench 1/2 HF 11850	3606.7	Ex_MQ_34	4.71	1.69	No AQA message	OK			

- MP3 advice (A.Veweij):
- RQ5.L6 only had 2 training quenches in the LHC, both between 3.5 and 3.6 kA.
- "If I am well-informed, the temp. margin at 4.5 K, 4.1 kA is about 0.47 and 0.28 K (for inner and outer layer cable resp.).
- If approved, then I do not see a problem in trying to push it to 4.1 kA, possibly with a predefined maximum number of training quenches"

Equipment responsible (L.Bottura)

"I do not see counter-indications to this test, provided the results are followed up as appropriate to guarantee the integrity of the cold mass, cryomagnet and circuit. I would specifically recommend to verify after each quench (especially above nominal) at

- peak voltage (magnet and quench heaters)
- MIIts and hot-spot
- cryogenic conditions (pressure)

to make sure that you remain within allowables. Behaviour at 4.2 is known to be somewhat erratic. It may also be good to perform long-term powering tests to verify stable operation at a current qualified after a successful training quench"

