Highlights and Accomplishments in 2016

Constantin Loizides (LBNL) for the ALICE collaboration

16 Dec 2016, Council meeting
2 LHC Run-2 datasets

- Versatile and challenging trigger mix
- Extremely stable operations
 - Thanks to CERN accelerator teams
 - ALICE efficiency > 90%

Datasets taken end of 2015 and 2016 are 7-8x larger than those from Run-1
3 Performance (from fast muon/calo reco)

\(p-Pb, 5.02 \, \text{TeV} \)

\[M_{\mu\mu} \text{ (GeV/c}^2) \]

\(p-Pb, 8.16 \, \text{TeV} \)

\[M_{\mu\mu} \text{ (GeV/c}^2) \]

\(Pb-p, 8.16 \, \text{TeV} \)

\[M_{\mu\mu} \text{ (GeV/c}^2) \]
4 TPC space-charge distortion calibration

- Large space point distortions in Run2 located in edges of a few inner chambers (visible eg. in DCA distributions)
- Implemented time-dependent calibration scheme using inner (ITS) and outer (TRD+TOF) detectors
- Scheme originally foreseen for RUN3

Example: Hypertriton production (roughly have of 2015 Pb-Pb statistics)

Intense effort over ~12 months resulted in effective calibration scheme!
5 Bayesian PID

- Generalized approach for usage of combined PID of various detectors
 - Standard approach “nSigma-cuts”
- Proof-of-concept for D-mesons

![Graph showing the comparison between n_σ PID and Bayesian PID for different mass distributions.]

- Allows access to probes with worse S/B
 - Λ_c → pK^−π^+ and c.c.
6 Scientific approach

Local structure of QCD vacuum

Local QCD + initial state/cold nuclear matter

Local QCD + initial state/cold nuclear matter + Quark-Gluon Plasma
7 Initial and final anisotropy

Temperature profiles in transverse plane from hydrodynamical calculation (H. Niemi)

Initial spatial anisotropy
Eccentricity

\[\epsilon_n e^{-in\varphi_n} \]

KSS bound
\[\frac{\eta}{s} > \frac{1}{4\pi} \sim 0.08 \]

Momentum space anisotropy
Flow

\[\nu_n = \langle \cos \left(2\varphi - 2\psi_n \right) \rangle \]
Latest “flow” results

Wealth of new data for precision comparisons with hydro calculations and extraction of $\langle \eta/s \rangle$
9 Correlation of anisotropic harmonics

- Measure relation between v_m and v_n via “Symmetric 2-harmonic 4-particle Correlations”
 $$SC(m, n) = \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle$$

- If $SC(m,n) \neq 0 \rightarrow$ (anti)-correlation

- Insensitive to
 - Non-flow effects
 - Inter-correlations of various symmetry plane angles

SC measurements are sensitive to the temperature dependence of η/s and initial conditions
10 Jet quenching

Search for effects in data:

\[R_{AA} = \frac{dN_{AA}/dp_T}{N_{coll} dN_{pp}/dp_T} \]

Compared to pp (vacuum) parton evolution in QGP affected by presence of many color charges which induce collisional and radiative energy loss:

→ Expected to change the inner structure, angular distribution and rate of jets

\[\Delta E_{\text{loss}}(g) > \Delta E_{\text{loss}}(q) > \Delta E_{\text{loss}}(Q) \]

(color factor) (dead-cone effect)

Compared to pp (vacuum) parton evolution in QGP affected by presence of many color charges which induce collisional and radiative energy loss:
11 Jets via two particle correlations

- Neutral pions as trigger particles
 - Measure associated charged hadron per-trigger yield $J = Y - B$
 - Compare to pp on near-side and away-side via

$$I_{AA} = \frac{\int J_{AA} d\Delta \Phi}{\int J_{pp} d\Delta \Phi}$$
Per-trigger yield modification

- Neutral pions as trigger particles
 - Measure associated charged hadron per-trigger yield J=Y-B
 - Compare to pp on near-side and away-side via
 \[I_{AA} = \frac{\int J_{AA} d\Delta\Phi}{\int J_{pp} d\Delta\Phi} \]
- Enhancement at low \(p_T \), and suppression on away-side for high \(p_T \)
 - Suppression well described by parton-energy loss calculations
 - Enhancement in AMPT from jet-medium interactions
 (but predicts suppression NS at high \(p_T \))
13 Jet shapes: jet mass

New result for Hard Probes conference; to be submitted soon

Interactions between jet and QGP cause changes in the jet structure

Expect relation between jet mass and virtuality of the partons, sensitive to the mechanism for energy loss
14 Heavy-quark energy loss

\[R_{AA} = \frac{dN_{AA}/dp_T}{N_{coll}dN_{pp}/dp_T} \]

via the measurement of decay electrons from charm and beauty hadrons

Strong suppression of electrons originating from heavy-flavor decays observed in central Pb-Pb collisions, unlike in p-Pb.

Constrain theoretical models (with D-meson \(R_{PbPb} \) & elliptic flow)

\(\rightarrow \) Extraction of heavy-quark transport coefficients
Strangeness enhancement

- Values in pp (and p-Pb) reach those from Pb-Pb
- Grand-canonical statistical description works well in Pb-Pb
 - Same mechanism in smaller system?
 - String hadronization models do not describe the data
- Follow-up studies at 13 TeV ongoing
16 Charmonia

Debye screening of $Q\bar{Q}$ potential at large T
17 Charmonia

Increase of J/psi yield in particular at low p_T (consistent with regeneration calculation)
18 ALICE upgrade program (for Run 3) ...

New Inner Tracking System (ITS)
- improved pointing precision
- less material → thinnest tracker at the LHC

Muon Forward Tracker (MFT)
- new Si tracker
- Improved \(\mu \) pointing precision

Time Projection Chamber (TPC)
- new GEM technology for readout chambers
- continuous readout
- faster readout electronics

MUON ARM
- continuous readout electronics

New Central Trigger Processor (CTP)

Data Acquisition (DAQ)/High Level Trigger (HLT)
- new architecture
- on line tracking & data compression
- 50kHz Ppb event rate

TOF, TRD, ZDC
- Faster readout

New Trigger Detectors (FIT)

→ technical design reports in CDS
ALPIDE sensor ready for production

- 1024 pixel columns
- 1.3x10^5 pixels/cm
- Spatial resolution
- Max particle rate: 100 MHz / cm^2
- Fake-hit rate: < 10^{-10} pixel / event
- Power: ~ 300 nW /pixel

First final-design TPC OROC assembly at NIPNE Bucharest

- SAMPA MPW2 chips being tested to confirm TPC specs
- First FEC Rev0 prototypes being tested
- Preproduction almost completed (2 IROC + 2 OROC)
- Comprehensive tests in lab and beam
- Start of mass production in 2017
20 Summary

- Extremely successful data taking
 - Thanks to the over-performing LHC
- TPC SCD calibration in production
- Numerous physics results
 - For all, see http://aliceinfo.cern.ch/ArtSubmission/submitted
 - Many more in the pipeline, stay tuned
- Ambitious upgrade in full swing
21 Extra
TPC Space point distortions

- Large space point distortions in Run2 (eg. in DCA distributions)
 - Charge originating from edges of a few inner chambers
 - Due to drifting columns of ions
 - Prop. to interaction rate

- Time dependent calibration as foreseen for Run3
 - Use inner (ITS) and outer (TRD+TOF) detectors
 - 3D distortion vector for each TPC voxel
 - Smoothed parameterization used as correction in reco
23 Upsilon regeneration?

Expected from sequential melting would be lower R_{AA} at higher energy, however the opposite trend is seen (even if not a large effect considering uncertainties). Do we see (re)-generation in QGP or at phase boundary even for Upsilon?
Four pion correlation (Pb-Pb)

- Discrepancy of quantum optics calculation with measured 4-pion correlation
- Possible explanations
 - Quantum coherence
 - $G=33\% \pm 9\%$
 - Fails to explain 3-pion correlation
 - Present also at high kT
 - Coulomb repulsion
 - Asymptotic limit used
 - If genuine multibody relevant, deviations up to 20% can explain effect
Jet-like dihadron correlation

Asymmetry of near side jet peak: broader in η than in φ

→ Possibly due to coupling to longitudinal flow; interplay between hard and soft physics
ALICE upgrade program

- **Motivation:** Focus on high-precision measurements of rare probes at low p_T
 - can not be selected with hardware trigger
 - need to record large sample of events
- **Target:** Pb-Pb recorded luminosity: $\geq 10\text{ nb}^{-1}$
 - gain in statistics: factor 100 for selected probes!
 - plus pp and pA data
- **Strategy:**
 - read out all Pb-Pb interactions at a maximum rate of 50 kHz with a minimum-bias trigger or continuously (TPC)
 - perform online data reduction
New ITS layout

12.5 G-pixel camera (~10 m²)

7-layer barrel geometry based on CMOS Pixel Sensors
- r coverage: 23 – 400 mm
- η coverage: $|\eta| \leq 1.22$ for tracks from 90% most luminous region

3 Inner Barrel layers (IB)
4 Outer Barrel layers (OB)

Material /layer: 0.3% X_0 (IB), 1% X_0 (OB)

Design Requirements
Event Readout Rate
Pb-Pb: 100 kHz
pp: > 400 kHz
ALPIDE sensor ready for production

1024 pixel columns
512 rows

Bias, Data Buffering, Interface

1.3x10^5 pixels/cm^2 O(30x30x30 \mu m^3)
Spatial resolution: \(\sim 5 \mu m \) (3-D)
Max particle rate: 100 MHz / cm^2
Fake-hit rate: < 10^{-10} pixel / event
Power: \(\sim 300 \) nW /pixel

Detection Efficiency & Fake Hit Rate

Sensitivity Limit

-10 Pixels masked

V_{BB} = 3V

3/NIEL, 1.7e+13 1MeV n/cm^2
29 The ALICE detector

Central Barrel Tracking, PID $|\eta| < 0.9$

Muon Arm $-4 < \eta < -2.5$

EM/DCal $|\eta| < 0.7$, $\Delta \phi \approx 1/2$