

Executive summary of LLRB workshop and MD plans

A. Rossi on behalf of (alphabetical):

BE-ABP, BE-BI, BE-OP, EN-MME, EN-ACE, EN-STI, TE-EPC, TE-VSC

TCC 13th April 2017

Workshop outline

Hardware:

- TCTW
- Instrumentation sensitivity and min beam requirements
- LRBB considerations with machine optics
- BB measurements and simulations

MD plan outcome:

- Wire impact on single beam
- BBLR Compensation preparation
- BBLR Wire Compensation
- BBLR Compensation procedure

In-jaw wire collimators installed during EYETS 2016-17

A. Rossi et al, 2nd Workshop on Wire Experiment for LRBB Compensation – 20 March 2017

TCTW Summary

- 350A wire moving in crossing plane and perpendicular (5th axis + BPM V alignment)
- Wire tested in prototype jaw to define interlocks
- TCTW tested on surface successfully
- Collimators (H) installed in IR5:
 - HW commissioning including wire completed (11/04/2017)
 - HW interlock on wire commissioned
 - SW control + interlock still under commissioning
 - NOTE: interlock logic approved by MPP#144 (07 April 2017)

Will be presented

at CWG 10/05

Instrumentation for BBLR

Observables

- Beam lifetime
- Losses at different collimator positions
- Tail diffusion
- Orbit
- Tune
- Chromaticity

Diagnostics

- BSRT & Coronagraph
- Standard & DOROS BPM
- BBQ, BTF & Schottky
- Radial modulation & Schottky

Beam lifetime

Beam lifetime is a quick indicator of machine performance

Calculation from regular BLMs is possible with the cross-calibration with the BCT.

 \hookrightarrow Useful for MD and sensitive to small losses.

BLMs downstream collimators could give additional information

 \hookrightarrow Location of the losses (IR3 vs IR7).

 \hookrightarrow Type of loss: vertical, horizontal, off-momentum.

dBLM in IR7: extremely fast, ns scale

→ Provide bunch-by-bunch information, useful to distinguish bunches with LR interactions.

 \hookrightarrow On-going: calibration to protons per second and frequency analysis.

Drbit

 DOROS on in-jaw BPMs allows wire alignment and sub-micron orbit measurement

Tune

- Unexcited ~1e⁻⁴
- MKQA kicks ~1e⁻⁵

Chromaticity

Measurement via RF modulation

BTF

 Powerful tool with potential to measure
BTF to measure tune shift and spread, but not linear

Schottky

 Possibility for non-invasive tune/chromaticity measurements

- BPM are optimised for very small offsets because they are very non liner systems.
- With the BBQ system, the tune can be measured for pilot up to a few nominal bunches. Precision depends on excitation method (ADT)

 Schottky: tune difficult to extract due to the strong synchrotron sidebands

Note that ultimate performance of instruments often requires special setup.

- IN YETS the camera intensified allowing BbB gating was installed.
- BSRT and Coronagraph are installed in the same beam line, share the same mirror system and only one of them can be used at a time. The switch takes approximately 20 s.
- Future beam tests and lab tests will be requested

G. Trad BE-BI

Workshop outline

Hardware:

- TCTW
- Instrumentation sensitivity and min beam requirements
- LRBB considerations with machine optics
- BB measurements and simulations
- MD plan outcome:
 - Wire impact on single beam
 - BBLR Compensation preparation
 - BBLR Wire Compensation
 - BBLR Compensation procedure

Optimal optics and HW conditions

• Where are we with the present HW and which consequence?

- 😊: Two wires at the TCT & TCL almost symmetric w.r.t. the IP
- \bigcirc : β -aspect ratio at the wires not ideal but much better for ATS2017 than for the 2016 optics
- ⊗: Wire in the H plane which rules out flat optics with very small (15-20 cm) horizontal beta*, not too large vertical beta* (~60 cm) and V crossing, as imposed by the IT aperture
- 🙁: By far enough current (× 4 compared to LHC needs), **but which drove a specific HW solution with (too) many beam sigma's lost between wire and TCT edge** (see also next slide)

S. Fartoukh BE-ABP

Round optics: 3 mm means already ~5 σ @ $\gamma\epsilon$ =2.5 μ m and β^* =40 cm (β ~900 m at the TCLW)

"Oval" optics: H crossing kept in CMS, β^* limited to ~ 35-40 cm in the V plane (parallel separation plane), and $\beta^* \sim 1$ m in the X-plane to keep a "decent" sizeable aspect ratio **3 mm becomes ~8 \sigma at \beta^*=1 m ... (\beta shrinks to ~360 m at the TCLW)**

→ Definitely the emittance of the weak beam has to be blown up.

Divonne, France

18

Can we find any configuration for 2017 to test the full correction?

(i) <u>Minimum allowed TCTW gap</u> of 6 collimation σ (i.e. calculated for $\gamma \epsilon$ =3.5 µm)

(ii) <u>Targeting a X-angle of 8 (10) beam σ in round (oval) optics to see convincing</u> life time drops (.. and recovery), i.e. ~ 10 (12) beam σ for the wire at the smallest β .

(iii) Trying $\beta^*=33 - 40$ cm for round optics, $\beta^*=1$ m in the X-plane for "oval" optics

It looks really tricky in all cases, and round optics still seems to be the most promising (easy) way to go

Collimator settings

Collimator settings on the strong beam

- For intensities above 3E11, no interlocks can be masked. MP qualification needed
- Use standard collimator settings qualified for physics operation
- Consider same procedure as in previous MDs on BBLR to decreasing crossing angle at constant gap + shift in central orbit at TCTs
- Collimator settings on the weak beam
 - For intensities below 3E11, interlocks can be masked
 - More freedom to change settings
 - No real inner limit on setting, as long as the TCSP is 1 σ further in. Example: TCTs at 6 σ (ϵ_n =3.5 µm)
 - Will scrape the beam if collimators are too close
- Collimator TCTW impedance
 - Very small down to 2 σ gaps

X. Buffat BE-ABP

R. Bruce BE-ABP

Workshop outline

Hardware:

- TCTW
- Instrumentation sensitivity and min beam requirements
- LRBB considerations with machine optics
- BB measurements and simulations

MD plan outcome:

- Wire impact on single beam
- BBLR Compensation preparation
- BBLR Wire Compensation
- BBLR Compensation procedure

Impact of 2 IP5 Wires at \bigcirc =240urad (5.6 / sep.) **Increased Wire Distance**

LARP

14

Impact of 2 IP5 Wires

- Without major changes to machine configuration, simulations show severe beam lifetime degradation (down to below 1h) due to long-range begins at separations of <6 /.
- Even with the present HW limitation, a 2-wire scheme can show measurable benefit to lifetime
 - 4x in 2016 optics at ∪=180urad
 - 2x in 2017 ATS optics and ∪=180urad
 - 2x in 2017 ATS optics, Σ =5um and \cup =240urad
 - Complementary simulations are under way to further optimise L/R wire impact

Scans of the DA and their applications and confirmations during the 2016 run

Min DA - Q'=15; I_{MO}=550 A; e=2 um; X=140 µrad

- Additional, but acceptable losses appeared when half crossing angle reduced from 185 to 140 urad.
- Lifetime or DA are also sensitive to the working point choice
- Clear dependence of lifetime on LR BB encounters was also observed in B1 and slight less in B2

Measurements with wire for 2017

ATS2017; β^* =40 cm; Q'=15; I_{MO}=500 A; ϵ =2.5 µm; I=1.25 10¹¹ p; X=150 µrad; Min DA.

Scenario with only IP5 crossing reduced + wire

- With and without tune correction : case with tune correction worse but not understood why.
- Better to go from large DA to small DA = first operate with wire then switch it off and observe a degradation in lifetime.

17

Wire tests at injection energy

- **Calibrating the wires** \rightarrow 1 beam and 1 wire
- Compensation btw wires \rightarrow 1 beam and 2 wires
- Mimic the LR \rightarrow 1 beam and 1 wire
- LR compensation \rightarrow 2 beams and 1 wire

Most of these tests (1,2,3) can be done with 1 PILOT at 450 GeV <u>if</u> compatible with the required BI precision.

Feedforward of wire impact on orbit and Q and Q'

G. Sterbini - Effect of the wire at injection energy

Workshop outline

Hardware:

- TCTW
- Instrumentation sensitivity and min beam requirements
- LRBB considerations with machine optics
- BB measurements and simulations

MD plan outcome:

- Wire impact on single beam
- BBLR Compensation preparation
- BBLR Wire Compensation
 - **BBLR Compensation procedure**

Wire impact on single beam

Goal: Test and calibrate the effect of the wires in a single beam (first at injection, then at flat top)

- □ Align wires with respect to the beam by measuring vertical orbit (or coupling)
- Measure impact of wires on beam orbit and tune and calibrate theoretical feedforward functions
- Other optics measurements (linear and non-linear chromaticity, beta-beating, tune-spread, RDTs)
- □ Repeat the test using the wires in **external jaw**
- Estimate impact in lifetime and emittance (tails, halo?) with one wire and compensate with other wire (lower priority)
- Energy: All can be done at 450 GeV. Qualification of tune and orbit feed-forward at 6.5 TeV
- Beams required: Only beam 2. Compatible with parallel studies using beam 1
- Beam composition and intensity: Single nominal bunches of 1.3 x 10¹¹ ppb
 - Some tests can function already with probe
- **Emittances**: Nominal BCMS, i.e. ~1.5-2.0 µm.rad
- **Optics**: Nominal @ injection with nominal injection tunes, octupoles and chromaticity settings
 - More exotic options if testing compensation or lifetime impact can be foreseen

G.Sterbini, A.Rossi, et

Commissioning

If time permits

2X8h already

scheduled

al.

BBLR Compensation preparation

- **Goal:** Measure the crossing angle reduction impact on lifetime
- Ideally, part of the intensity ramp-up
 - Synergy with crossing angle levelling setting-up
- Energy: 6.5 TeV
- Beam composition: 2-3 colliding trains in beam1 and 2 (without/with IR8), a few single bunches in beam 2
 - With full long-range, PACMAN-L/R, non-colliding
- Intensity: Nominal @ 1.25 x 10¹¹ ppb
- Emittances: Nominal for trains i.e. 2.5 µm.rad for BCMS, some nominal single bunches and some blown up by ADT to 4-5µm
 - Optics measurements can be done with pilot
- **Optics**: Nominal @ collision with nominal tunes, octupoles and chromaticity settings
 - β* of 40 cm, but probably 33 cm when commissioned
- Procedure:
 - Reduce crossing angle in steps
 - Measure impact on lifetime of different bunches, while keeping constant orbit and tune
 - Monitor impact in **emittances**, **luminosity**, **halo**, **losses**
 - Measure optics if time permits

Y.Papaphilippou BE-ABP

J.Wenninger et al.

BBLR Wire Compensation

- Goal: Prove BBLR compensation with powering wire when crossing angle reduction impacts beam lifetime
 - Leading order octupole effect compensation possible with present hardware
- Energy: 6.5 TeV
 - Partially squeezed optics @ injection could be envisaged (simulation work to be done and optics commissioning overhead)

Beam composition

- A **few single bunches** (around 3-4) in beam 2 (weak beam) spaced far enough for machine protection (abort gap kicker rise time)
- With full long-range, 1 non-colliding
- As many trains in beam 1
- Intensity: Nominal of 1.25 x 10¹¹ ppb for beam 1 (or highest possible from SPS)
- Emittances: Nominal for trains i.e. 2.5 µm.rad for BCMS, some nominal single bunches and some blown up by ADT to 4-5µm
- **Optics**: Nominal @ collision with nominal tunes, octupoles and chromaticity settings
 - β* of **40 cm**, but probably **33 cm** if commissioned
 - Un-squeezed optics in IR1 (only if commissioned for IR compensation MD)
- Crossing angle:
 - Start with nominal in both IR1 and 5, no collisions in IR2 and 8

Moving only one IR crossing angle could be **envisaged**

Y.Papaphilippou BE-ABP

BBLR Compensation procedure

- Inject and ramp up a few bunches in beam 2 to commission orbit and tune feed-forward with wire (ideally during commissioning phase) and blow-up effect of ADT
 - Compatible with parallel tests in beam 1
- Inject, ramp-up and collide strong (beam 1) and weak beam (beam 2)
- Set internal TCT/L jaw at 5-6 σ_{col} (including other collimation adjustments enabling this)
- **Reduce crossing angle** in steps, while keeping orbit and tune constant
- Observe lifetime reduction and ramp-up the current of each wire in steps, observing lifetime recovery in colliding weak beam
- Monitor emittance, luminosity, halo, losses
- Repeat the test with different weak beam flavours (Pacman-L, Pacman-R, without HO and noncolliding)
 - Measure optics, e.g. beta-beating, coupling, chromaticity, tune spread, RDTs, with wire compensation
 - Repeat the test with IR1 crossing angle fixed and/or separated in IR1
- Repeat the test using the wires in external jaw

MD schedule and time-line

	Apr	LHC	to OP			May		June								
Wk	14		15	16	17	18	19	20	21	22	23		24	25	26	
Мо	3		10	Easter Mon 17	24	1st May 1	8	15	22	29	Whit		12	E	19 26	
Tu														hysic		
We					t							Bu		cial p		
Th					ecko				Ascension			iddu		Spe		
Fr		G	. Friday		e ch							Scr			MD 1	
Sa					achir		Re	commission with beam	ning							
Su					ž											

	July				Au	g			Sep						_
Wk	27	28	29	30	31		32	33	34	35	36	37	38	39	
Мо	3	10	17	24	L I	31	7	14	21	28	4	11	18	25	
Tu					hysic										
We	TS1				dial p								TS2		
Th					Spe						Jeune G				
Fr												MD 2			
Sa															
Su															

- Only 15 MD block days
 - MD1 may be moved towards mid-July
 - Possibility for additional days after TS2 if LHC lumi goal reached
- Wire calibration will profit from **commissioning** time in May (2x8h)
- Crossing angle scan may profit from intensity ramp-up
- Wire compensation MD requests **3x8h** for strict minimum
- Ideally Would like to profit already from the 1st MD block

Appendix

Introduction to flat optics and potential of wire compensation

Flat optics example: HL-LHC plan B for 10³⁵ virtual luminosity w/o crab-cavities (HL-LHC Coordination Group, May 2013, and *PRSTAB 18-121001, 2015*)

 \Rightarrow ®^{*}=40/10 cm at IP1&5 (i.e. *r=4*), \bigcirc =300 µrad, i.e. about halved vs. baseline but still 0.5 σ at ®^{*}=40 cm in the X-plane, ho collision at full current in 3 IPs

Principle of the wire correction and wire specification

$$B_k + i A_k = \frac{\mu_0[IL]_{\text{eq}}}{2\pi} \times \frac{1}{z_0^k}$$

Proposed by Koutchouk

- 1. H crossing ($z_0 = x_0$ real) induces only normal harmonics (A_k =0).
- 2. V crossing $(z_0 = iy_0)$ purely imaginary) induces both skewed harmonics when k is odd $(B_{2k+1}=0)$ and normal harmonic when k is even $(A_{2k}=0)$.
- An alternated HV Xing scheme in 2 low-β IRs with identical round optics compensates all 3. (4n + 2)-pole tune shift and tune spread $(B_2, B_6, ...)$ but combine additively the (4n)-pole tune spread $(B_4, B_8, ...)$ That is why the LR tune spread is close to that of a **pure octupole** in the LHC, and was easy to compensate with octupole magnets, at least at 4 TeV
- The compensation is only partial for alternated HV Xing in 2 low-β IR's with flat optics of 4. aspect ratio r and 1/r $r = \frac{b_x}{b}$

S. Fartoukh BE-ABP

2nd Workshop on wire experiment for BBLR compensation. Divonne, France

Effects of wire on tails at injection

- effect of wire on lifetime is small at injection even at minimal separation of $d_{jaw <-> beam} = 5.7 \sigma$ and current of $I_{wire} = 350 \text{ A}$
- effect of WIRE RIGHT is small compared to WIRE LEFT due to different ratio in beta function
- wire contributes considerably to the tune spread
- \Rightarrow tune spread generated by octupoles might be compensated by wire (e.g. thin line for $I_{wire} > 0$)
- without octupoles, wire cleans in horizontal plane (1/r potential)
- with octupoles, the effect of the wire on the tail particles depends on:
 - the non-linearities present
 - the working point
- ⇒ effect of wire on tail particles depends strongly on machine configuration (mainly tune and octupoles)
- \Rightarrow wire does not necessarily deplete particles uniformly in x and y

Considerations on impedance and beam stability

- The TCTW impedance is similar to the TCTPH's
- The increase of the impedance due to the reduced gaps (>2 nominal σ → >~7 beam sigma for the wire) of the TCTW does not affect significantly the beam stability. The cut tails also have marginal impact with the positive polarity of the octupole
- For a single bunch, operation without ADT should be possible
- The variation of the tune shift due to the impedance when moving the wire can be in the order of few 10⁻⁴ with 10¹¹p per bunch
- Beam transfer function measurements provide a measurement of the amplitude detuning, mixed with the particle distribution
 - Detailed studies usually needed to fully understand the measurements
 - Relative impact of the wire (tune shift and spread) should be visible

X. Buffat BE-ABP