Mixing and CPV in D^0 and B^0_s

Zoltan Ligeti FPCP, May 12–16 2007, Bled, Slovenia

- Introduction
 - ... Formalism differences between neutral mesons
- $D^0 \overline{D}^0$ mixing
 - ... Measurements and their interpretations
 - ... Calculations of $\Delta\Gamma$ and Δm
- $B_s^0 \overline{B}_s^0$ mixing
 - ... Constraints on new physics
 - ... Implications for LHC(b)
- Conclusions

1956, $K^0 - \overline{K}^0$: discovery of K_L (proposal of *C* non-conservation in '55)

1987, $B^0 - \overline{B}^0$: discovery of mixing (\Rightarrow large m_t)

1956, $K^0 - \overline{K}^0$: discovery of K_L (proposal of *C* non-conservation in '55)

- **1987**, $B^0 \overline{B}^0$: discovery of mixing (\Rightarrow large m_t)
- 2006, $B_s^0 \overline{B}_s^0$: measurement of Δm_s

- **1956**, $K^0 \overline{K}^0$: discovery of K_L (proposal of *C* non-conservation in '55)
- **1987**, $B^0 \overline{B}^0$: discovery of mixing (\Rightarrow large m_t)
- 2006, $B_s^0 \overline{B}_s^0$: measurement of Δm_s
 - Q: If you asked someone last year when D^0 mixing would be observed...?
 - A: Probably not to be discovered for at least another decade...

1956, $K^0 - \overline{K}^0$: discovery of K_L (proposal of *C* non-conservation in '55)

- **1987**, $B^0 \overline{B}^0$: discovery of mixing (\Rightarrow large m_t)
- 2006, $B_s^0 \overline{B}_s^0$: measurement of Δm_s
- **2007**, $D^0 \overline{D}^0$: growing evidence for $\Delta \Gamma = \mathcal{O}(0.01)$
 - What do the last two pieces of data tell us?

Mixing as a probe of NP

• NP flavor problem: TeV scale (hierarchy problem) \ll flavor & CP violation scale

$$\epsilon_K: \ \frac{(s\bar{d})^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^4 \,\text{TeV}, \qquad B_{d,s} \text{ mixing: } \frac{(b\bar{q})^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim \begin{cases} 10^3 \,\text{TeV} \,, & B_d \\ 10^2 \,\text{TeV} \,, & B_s \end{cases}$$

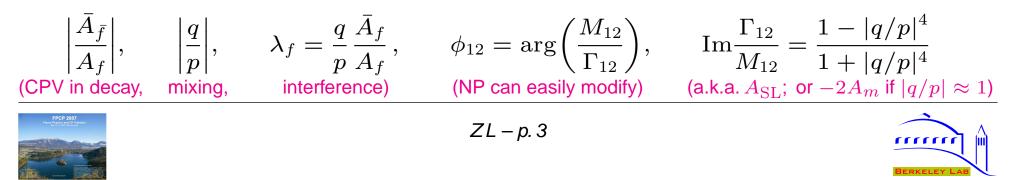
- Almost all extensions of the SM have new sources of CPV & flavor conversion
 - Originate at much higher scale than EWSB and are decoupled (MFV)?
 - Originate from EWSB-related NP, with non-trivial structure?
- Non-SM B⁰_s mixing: many models with new TeV-scale flavor physics; e.g., NMFV: Top may have special role in EWSB, strong coupling to NP, assume NP quasialigned with Yukawas (to suppress FCNC's) [Agashe, Papucci, Perez, Pirjol, hep-ph/0509117]
- Large D^0 mixing: quark-squark alignment ($m_{\tilde{g},\tilde{q}} \lesssim 1$ TeV) predicts $\Delta m/\Gamma \sim \mathcal{O}(\lambda^2)$ (To not violate Δm_K bound, θ_C mostly from up sector, predicts sizable D mixing)

• Time evolution of two flavor eigenstates:

$$i\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{|P^{0}(t)\rangle}{|\overline{P}^{0}(t)\rangle}\right) = \left(M - \frac{i}{2}\Gamma\right)\left(\frac{|P^{0}(t)\rangle}{|\overline{P}^{0}(t)\rangle}\right)$$

M and Γ are 2×2 Hermitian matrices, CPT implies $M_{11} = M_{22}$ and $\Gamma_{11} = \Gamma_{22}$

- Mass eigenstates are eigenvectors of \mathcal{H} : $|P_{L,H}\rangle = p |P^0\rangle \pm q |\overline{P}^0\rangle$ Time dependence involves mixing and decay: $|P_{L,H}(t)\rangle = e^{-(im_{L,H}+\Gamma_{L,H}/2)t} |P_{L,H}\rangle$
- Decay amplitudes: $A_f = \langle f | \mathcal{H} | P^0 \rangle$, $\bar{A}_f = \langle f | \mathcal{H} | \bar{P}^0 \rangle$
- Mass and width differences: $\Delta m = m_H m_L (> 0)$, $\Delta \Gamma = \Gamma_H \Gamma_L$ Other phase convention independent observables:



Not all neutral mesons are born equal

• General solution for eigenvalues:

$$(\Delta m)^{2} - \frac{(\Delta \Gamma)^{2}}{4} = 4|M_{12}|^{2} - |\Gamma_{12}|^{2}, \qquad \Delta m \Delta \Gamma = 4\operatorname{Re}(M_{12}\Gamma_{12}^{*}), \qquad \frac{q^{2}}{p^{2}} = \frac{2M_{12}^{*} - i\Gamma_{12}^{*}}{2M_{12} - i\Gamma_{12}}$$

- If $|\Delta\Gamma| \ll \Delta m (|\Gamma_{12}/M_{12}| \ll 1)$ Holds for $B_{d,s}^0$ mixings (in the SM and beyond) $\Delta m = 2|M_{12}|(1 + \ldots), \qquad \Delta\Gamma = 2|\Gamma_{12}|\cos\phi_{12}(1 + \ldots) \quad [\Rightarrow \text{NP cannot enhance } \Delta\Gamma_{B_s}]$ $\frac{q^2}{p^2} = \frac{(M_{12}^*)^2}{|M_{12}|^2}(1 + \ldots) \Rightarrow \arg \frac{q}{p} \propto \phi_{12} \Rightarrow \text{Good sensitivity to NP in } M_{12}$
- If $|\Delta\Gamma| \gg \Delta m (|M_{12}/\Gamma_{12}| \ll 1)$ Is this applicable for $D^0 \overline{D}^0$ mixing?

$$\begin{split} \Delta \Gamma &= 2|\Gamma_{12}| \ (1+\ldots), \qquad \Delta m = 2|M_{12}| \cos \phi_{12} \ (1+\ldots) \qquad \text{[Bergmann et al., hep-ph/0005181]} \\ \frac{q^2}{p^2} &= \frac{(\Gamma_{12}^*)^2}{|\Gamma_{12}|^2} \ (1+\ldots) \Rightarrow \text{sensitivity to } M_{12} \text{ suppressed. If no CPV in } D \text{ decay} \Rightarrow \\ \arg \frac{q}{p} \ [\sim \arg(\lambda_{K^+K^-})] \propto 2 \left| \frac{M_{12}}{\Gamma_{12}} \right|^2 \sin(2\phi_{12}) \quad \Rightarrow \text{Weak sensitivity to NP in } M_{12} \end{split}$$

• If $|\Delta\Gamma| \gg \Delta m$ then sensitivity to NP in M_{12} is suppressed by $\Delta m/\Delta\Gamma$

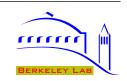
New physics effects on mixing

- New physics modifies M_{12} ; CPV in mixing observable via $\phi = \arg(q/p)$ or $|q/p| \neq 1$ Observing $\phi \neq$ SM prediction may be the best hope to find NP
- Mixing parameters: $B_{d,s}$: $\Delta\Gamma \ll \Delta m$, K: $\Delta\Gamma \approx -2\Delta m$, D: $\Delta\Gamma \gtrsim \text{or} \gg \Delta m$
 - If $\Delta m \gg \text{or} \ll \Delta \Gamma$ then $|q/p| \approx 1$ If $\Delta \Gamma \sim \Delta m$ then |q/p| may be far from 1
 - If $\Delta m \gg \Delta \Gamma$, the CPV phase can be LARGE: $\phi = \arg(M_{12}) + \mathcal{O}(\Gamma_{12}^2/M_{12}^2)$
 - If $\Delta m \ll \Delta \Gamma$, the CPV phase becomes small: $\phi = \mathcal{O}(M_{12}^2/\Gamma_{12}^2) \times \sin(2\phi_{12})$
 - \Rightarrow It is of prime importance to determine relative magnitudes of Δm_D and $\Delta \Gamma_D$
- Since Δm_D not yet measured, use $|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}{}^0\rangle$ instead of $|D_{L,H}\rangle$

$$D^0 - \overline{D}^0$$
 mixing

Special features of the $D^0 - \overline{D}^0$ system

- Of the neutral meson systems $D^0 \overline{D}^0$ mixing is unique in that:
 - The only meson where mixing is generated by the down type quarks
 - It involves only the first two generations: $CPV > 10^{-3}$ would signal new physics
 - Expected to be small in the SM: Δm , $\Delta \Gamma \lesssim 10^{-2} \, \Gamma$, since they are DCS and vanish in the flavor SU(3) symmetry limit
 - Sensitive to new physics: NP can easily enhance Δm but unlikely to affect $\Delta \Gamma$ If $\Delta\Gamma \gtrsim \Delta m$: probably large SU(3) breaking — If $\Delta m > \Delta\Gamma$: probably NP
 - Mixing has finally been observed!



Time dependence of decay rates

Interplay of mixing and decay — Allow CPV in mixing (not in decay)

• Setting $\phi = 0$: no CPV in mixing and choosing $|D_1\rangle = CP$ -odd ($|D_2\rangle = CP$ -even)

Mixing parameters from lifetimes

• Measure lifetimes, fitting exponential time dependences in decays to flavor and CP eigenstates (e.g., K^+K^- and π^+K^-)

$$y_{CP} = \frac{\hat{\tau}(D^0 \to K^- \pi^+)}{\hat{\tau}(D^0 \to K^+ K^-)} - 1 = \frac{y \cos \phi}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - \frac{x \sin \phi}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right)$$

$$A_{\Gamma} = \frac{\hat{\tau}(\overline{D}^0 \to K^+ K^-) - \hat{\tau}(D^0 \to K^+ K^-)}{\hat{\tau}(\overline{D}^0 \to K^+ K^-)} = \frac{y \cos \phi}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - \frac{x \sin \phi}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right)$$

$$f CP \text{ is conserved: } A_{\Gamma} = 0 \text{ and } y_{CP} = \pm y$$

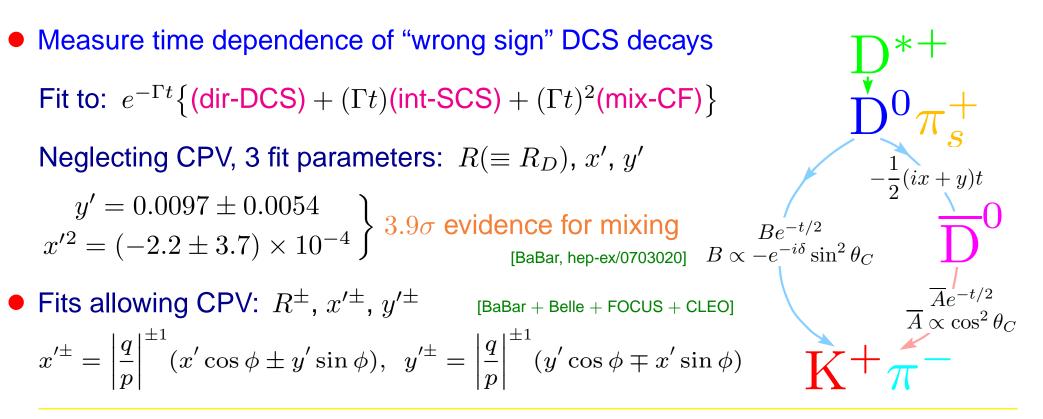
• Results: $y_{CP} = 0.011 \pm 0.003 \ (3.5\sigma)$ [HFAG — Belle, BaBar, E791, FOCUS, CLEO] $A_{\Gamma} = 0.0001 \pm 0.0034$ [Belle, hep-ex/0703036]

• If $y \cos \phi$ dominates y_{CP} : $\frac{A_{\Gamma}}{y_{CP}} \approx \frac{|q/p|^2 - 1}{|q/p|^2 + 1} - \frac{x}{y} \tan \phi$ (smaller error?) [Nir, hep-ph/0703235]

• Observed value of y_{CP} could be explained by $y \approx 0.01$ or large x, |q/p| - 1, and ϕ



Mixing parameters from $D o K^{\pm} \pi^{\mp}$



• If y' dominates y'^{\pm} : $\frac{y'^+ - y'^-}{y'^+ + y'^-} \approx \frac{|q/p|^2 - 1}{|q/p|^2 + 1} - \frac{x'}{y'} \tan \phi$ (smaller error?) [Nir, hep-ph/0703235]

• Unless there is CPV in decay, $R^+ = R^- !$ — Please do 5 param fit with $A_D \rightarrow 0$ (Early days of $B \rightarrow \psi K_S$: quote $S_{\psi K}$ with $|\lambda_{\psi K}| = 0$; maybe bigger impact here?)

Mixing parameters from $D o K_S \pi^+ \pi^-$

 Study interference in m_{Kπ⁺} - m_{Kπ⁻} Dalitz plot — sensitive directly to x and y Models well-tuned for measurement of CKM angle γ from B[±] → D_(K_Sππ)K[±] Some strong phases are known & vary on smaller scales than others (Γ_{K*} ≪ m_D)
 Assuming CP cons.: x = (0.80 ± 0.29^{+0.09+0.15}_{-0.12-0.14})%, y = (0.33 ± 0.28^{+0.07+0.08}_{-0.12-0.09})% [Belle, arXiv:0704.1000]

(I'm a bit concerned about uncertainties related to the fact that we need the amplitude across the Dalitz plot, but have mostly tested its modelling with rates... [maybe it's only me...] *CP* tagged *D* decays will help.)

- Measurements of wrong sign semileptonic rate $(D^0 \rightarrow K^+ \ell \bar{\nu})$ sensitive to $x^2 + y^2$ Weaker bounds at present: $x^2 + y^2 = 0.0010 \pm 0.0009$ [Belle, BaBar, CLEO, E791]
- In the limit of larger data sets: measurements with linear sensitivity to x, y

Some tensions in data?

• Summary of measurements:

Lifetimes: $y_{CP} = 0.011 \pm 0.003$ $A_{\Gamma} = 0.0001 \pm 0.0034$

BaBar $K\pi$: $y' = 0.0097 \pm 0.0054$ $x'^2 = -0.00022 \pm 0.00037$ $x' < 0.023 (2\sigma)$

Belle $K\pi\pi$: $x = 0.0080 \pm 0.0034$ $y = 0.0033 \pm 0.0028$

• It seems to me that 1σ ranges of x, y, y_{CP}, A_{Γ} have no solution for $|q/p|, \cos \phi$ (y' also depends on δ , and x'^2 alone not very restrictive)

Not very significant, but there is room for better consistency

There is lot to be learned from more precise measurements

Calculations of $\Delta\Gamma$ and Δm

OPE analysis ($m_c \gg \Lambda$)

- $D^0 \overline{D}^0$ mixing only arises at order $m_s^2 / \Lambda_{\chi SB}^2$ (if SU(3) violation is perturbative) [Falk *et al.*, hep-ph/0110317] SU(3) suppression & DCS \Rightarrow hard to estimate x, y in the SM: $x, y \sim \sin^2 \theta_C \epsilon_{SU(3)}^2$
- Short distance box diagram: $x \propto \frac{m_s^2}{m_W^2} \times \frac{m_s^2}{m_c^2} \rightarrow 10^{-5}$ y has additional m_s^2/m_c^2 helicity suppression
- Higher order terms in the OPE are suppressed by fewer powers of m_s [Georgi '92]

	4-quark	6-quark	8-quark	
$rac{\Delta m}{\Delta m_{ m box}}$	1	$rac{\Lambda^2}{m_sm_c}$	${\Lambda^4\over m_s^2m_c^2}{lpha_s\over 4\pi}$	$\frac{c}{D^{\circ}}$
$\frac{\Delta\Gamma}{\Delta m}$	$\left \begin{array}{c} \displaystyle rac{m_s^2}{m_c^2} \end{array} ight $	$\frac{\alpha_s}{4\pi}$	$rac{lpha_s}{4\pi}eta_0$	[Bigi & Uraltsev ('00) claimed that $x,y \propto m_s$ is possible]

• Obtain $x, y \leq 10^{-3}$, with some assumptions about the matrix elements ($\Lambda \sim 4\pi f_{\pi}$)

Long distance analysis (few final states)

- May be large, but extremely hard to estimate: $y \sim \frac{1}{2\Gamma} \sum_{n} \rho_n \langle \overline{D}^0 | H_w | n \rangle \langle n | H_w | D^0 \rangle$ SU(3) breaking has been argued to be $\mathcal{O}(1)$ based on $\frac{\mathcal{B}(D^0 \to K^+K^-)}{\mathcal{B}(D^0 \to \pi^+\pi^-)} \approx 2.8$ Contribution to y: large cancellations possible, sensitive to strong phase: $y_{PP} = \mathcal{B}(D \to \pi^+\pi^-) + \mathcal{B}(D \to K^+K^-) - 2\cos\delta\sqrt{\mathcal{B}(D \to K^-\pi^+)\mathcal{B}(D \to K^+\pi^-)} \approx (5.76 - 5.29\cos\delta) \times 10^{-3}$ (from measured rates)
- Assuming $\cos \delta \sim 1$ [SU(3) limit] and that these states are representative (many other DCS rates poorly known), it was often stated that $x \lesssim y < \text{few} \times 10^{-3}$
- The most important long distance effect may be due to phase space:
 - Contrary to SU(3) breaking in matrix elements, this SU(3) violation is calculable model independently with mild assumptions
 - Negligible for lightest PP final states; important for states with mass near m_D

$\Delta\Gamma$ from SU(3) breaking in phase space

- Phase space difference between final states containing fewer or more strange quarks is a calculable source of SU(3) breaking these are "threshold effects" [Falk *et al.*, hep-ph/0110317]
- For any final state F in any SU(3) representation R (e.g., PP can be in 8 or 27), we can calculate the "would-be" value of y, if D only decayed to the states in F_R

$$y_{F,R} = \frac{\sum_{n \in F_R} \langle \overline{D}^0 | H_w | n \rangle \rho_n \langle n | H_w | D^0 \rangle}{\sum_{n \in F_R} \Gamma(D^0 \to n)}$$

• E.g.: $D \to PP$ with U-spin: $s_1^2 \left[\Phi(\pi^+, \pi^-) + \Phi(K^+, K^-) - 2\Phi(K^+, \pi^-) \right] / \Phi(K^+, \pi^-)$ Result is explicitly proportional to $s_1^2 \equiv \sin^2 \theta_C$ and vanishes in SU(3) limit as m_s^2

• If decay rates to all representations were known, we could reconstruct y from $y_{F,R}$

$$y = rac{1}{\Gamma} \sum_{F,R} y_{F,R} \left[\sum_{n \in F_R} \Gamma(D^0 o n)
ight]$$

Our estimate of $\Delta\Gamma$

ble	rounded to ne	arest 5%
	final state	fraction
tes	PP	5%
	PV	10%
	$(VV)_{s}$ -wave	5%
ved	$(VV)_{d}$ -wave	5%
	3P	5%
4P)	4P	10%
/		

• The 2-, 3-, and 4-body final states account for sizable fraction of the *D* width

Small contribution from two- and three-body final states (the *PP* contribution is "anomalously" small)

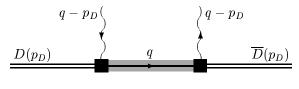
Large SU(3) breaking when some states are not allowed at all (4m_K > m_D) in heavier multiplets: y_{4P} = O(s₁²)
 (Only studied smallest symmetric representations for 4P)

- There are other large rates near threshold, e.g.: $\mathcal{B}(D^0 \to K^- a_1^+) = (7.5 \pm 1.1)\%$ Sizable contributions likely, but are untractable
- Morals: There are final states that can contribute to y near the 1% level It would require cancellations to suppress y_{CP} much below 1%

Connecting $\Delta\Gamma$ with Δm

• A dispersion relation in HQET relates Δm to an integral of $\Delta\Gamma$ over the mass M of a heavy "would-be D meson"

$$\Delta m = -\frac{1}{2\pi} \operatorname{P} \int_{2m_{\pi}}^{\infty} \mathrm{d}M \, \frac{\Delta \Gamma(M)}{M - m_D} + \dots$$



(Dispersion relations used before; I don't know how to justify them in full QCD)

• Assuming that phase space is only source of SU(3) breaking, hadronic matrix elements cancel in y but not in x (need to know M-dependence of decay rates)

2-body: Many interesting subtleties (chiral, intermediate, heavy mass regions) Most guidance for *PP* from theory on modelling *M*-dependence \Rightarrow obtain small *x*

4-body: can get sizable contributions to x, but typically $x \leq y$

• Conclusion was: if $y \sim 1\%$ then we expect $10^{-3} < |x| < 10^{-2}$ Uncertainties much larger than for the estimate of y

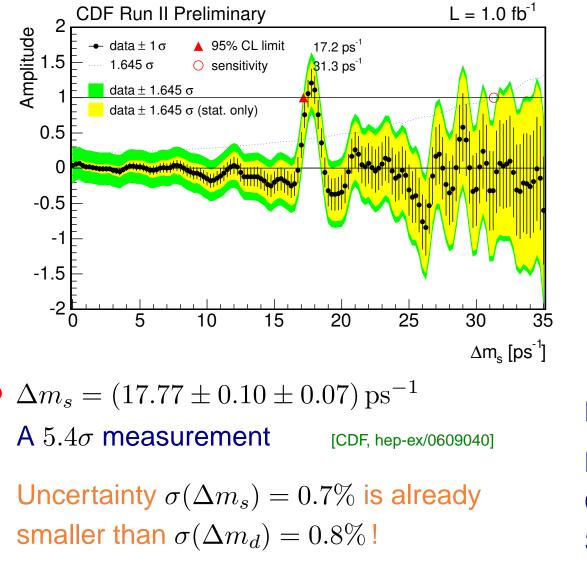
Ζ

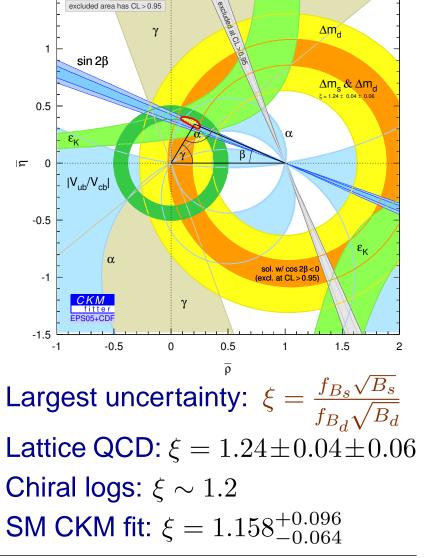
Summary for $D^0 - \overline{D}^0$ mixing

- It is possible that $\Delta\Gamma/\Gamma \sim 1\%$ in the SM (calculation w/o ad hoc assumptions)
- It is likely that x < y in the SM (with some assumptions, predict $x \leq y$)
- If this is the case then sensitivity to NP is reduced, even if NP dominates M_{12}
- The central values of recent experimental results may be due to SM physics
- SM predictions of Δm and $\Delta \Gamma$ remain uncertain \Rightarrow measurements of Δm and $\Delta \Gamma$ alone (especially since $\Delta m \lesssim \Delta \Gamma$) cannot be interpreted as new physics
- Important to improve constraints on both $\Delta\Gamma$ and Δm , and continue to look for CP violation, which remains a potentially robust signal of new physics

$$B^0_s$$
 – \overline{B}^0_s mixing

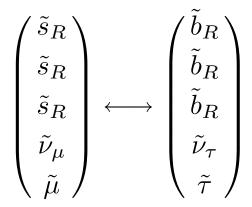
The news of 2006: Δm_{B_s} measured

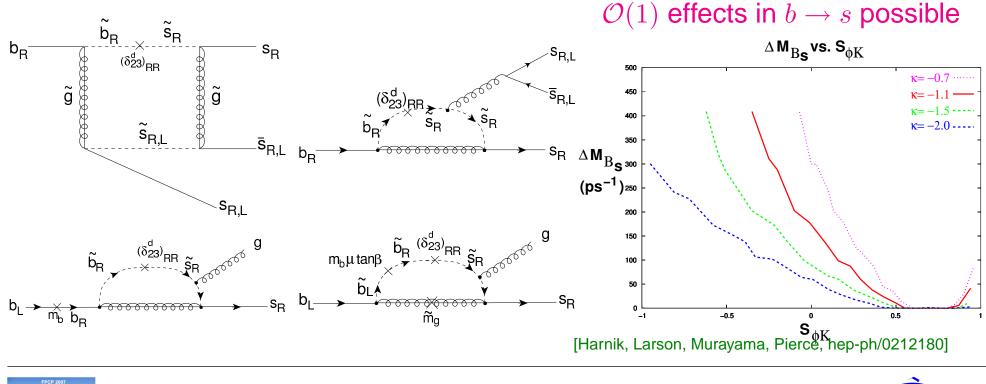




Some models to enhance Δm_s

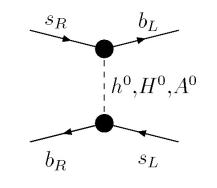
- SUSY GUTs: near-maximal $\nu_{\mu} \nu_{\tau}$ mixing may imply large mixing between s_R and b_R , and between \tilde{s}_R and \tilde{b}_R
 - Mixing among right-handed quarks drop out from CKM matrix, but among right-handed squarks it is physical

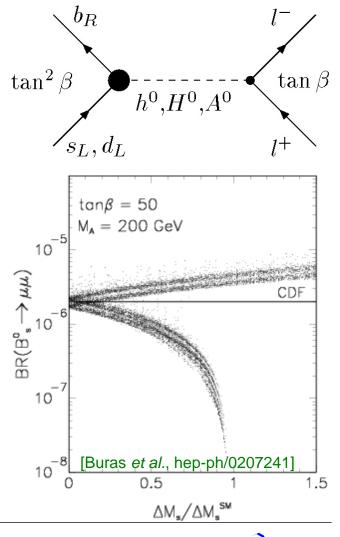




Some models to suppress Δm_s

- Neutral Higgs mediated FCNC in the large $\tan \beta$ region: Enhancement of $\mathcal{B}(B_{d,s} \to \mu^+ \mu^-) \propto \tan^6 \beta$ up to two orders of magnitude above the SM CDF & DØ: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 5.8 \times 10^{-8}$ (95% CL) [Bernhard, yesterday] SM: 3.4×10^{-9} — measurable at LHC
 - Suppression of $\Delta m_s \propto an^4 eta$ in a correlated way





New physics in *B* mixing

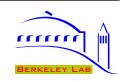
• $B_{d,s}$ mixings are short distance dominated, so: theory errors \ll measured values (For Δm_D and ϵ'/ϵ we only know NP < measurement; $\Delta \Gamma_s$ ($\Delta \Gamma_s^{CP}$) in between)

Assume: (i) 3×3 CKM matrix is unitary (ii) Tree-level decays dominated by SM

• Concentrate on NP in $\Delta F = 2$: two parameters for each meson mixing amplitude

$$M_{12} = \underbrace{M_{12}^{\text{SM}} r^2 e^{2i\theta}}_{\text{easy to relate to data}} \equiv \underbrace{M_{12}^{\text{SM}} (1 + h e^{2i\sigma})}_{\text{easy to relate to models}}$$

- $B\overline{B}$ mixing dependent observables sensitive to h, σ : $\Delta m_{d,s}, S_{f_i}, A_{SL}^{d,s}, \Delta \Gamma_s^{CP}$ (Hadronic uncertainty sizable in $A_{SL}^{d,s}$ and $\Delta \Gamma_s^{CP}$, but in SM $A_{SL}^{d,s} \ll$ current bound)
- Tree-level CKM constraints unaffected: $|V_{ub}/V_{cb}|$ and γ (or $\pi \beta \alpha$) (neglect NP in $\Delta F = 1$, and possible correlations between $b \to d$ and $b \to s$)



New physics in B^0_s – \overline{B}^0_s mixing

Constraints before (left) and after (right) measurement of Δm_s and $\Delta \Gamma_s^{CP}$

Recall parameterization: $M_{12}=M_{12}^{
m SM}\left(1+h_s\,e^{2i\sigma_s}
ight)$ [ZL, Papucci, Perez, hep-ph/0604112]

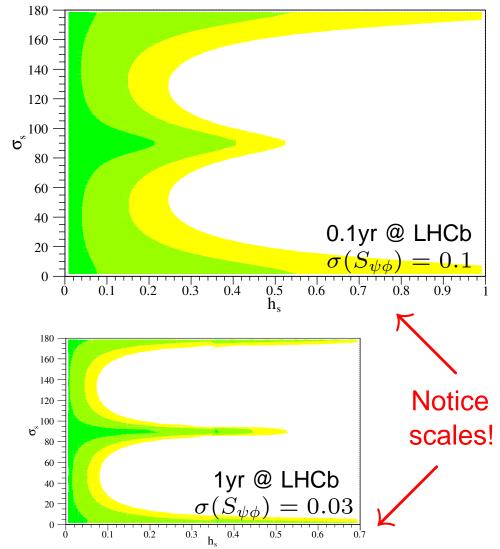
180 180 Theory uncertainty 160 -160 1σ allowed region 140 140 2σ allowed region 120 120 00 ق س 00 ق م 80 80 60 60 40 40 20 20 0 0 0.5 2.5 0.5 1.5 2.5 3.5 h_s h_s

• To learn more about the B_s system, need data on CP asymmetry in $B_s \rightarrow J/\psi \phi$

• *h* measures "tuning": $h \sim (4\pi v/\Lambda)^2$, so $\begin{cases} h \sim 1 & \Rightarrow \Lambda_{\text{flavor}} \sim 2 \text{ TeV} \sim \Lambda_{\text{EWSB}} \\ h < 0.1 & \Rightarrow \Lambda_{\text{flavor}} > 7 \text{ TeV} \gg \Lambda_{\text{EWSB}} \end{cases}$

Next milestone in B_s : $S_{B_s \to \psi \phi, \psi \eta^{(\prime)}}$

- $S_{\psi\phi}$ (sin $2\beta_s$ for *CP*-even) analog of $S_{\psi K}$ CKM fit predicts: sin $2\beta_s = 0.0346^{+0.0026}_{-0.0020}$
- 2000: Is $\sin 2\beta$ consistent with ϵ_K , $|V_{ub}|$ Δm_B and other constraints? 2009: Is $\sin 2\beta_s$ consistent with ...?
- Plot $S_{\psi\phi} =$ SM value $\pm 0.10 / \pm 0.03$ 0.1/1yr of nominal LHCb data \Rightarrow
- With relatively little data, huge impact on our understanding; maybe one of the most interesting early measurements



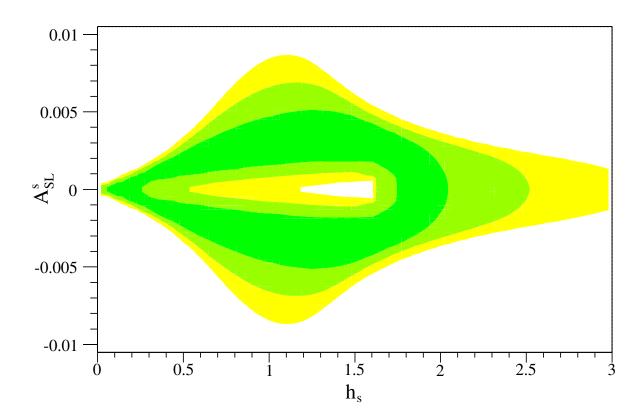
Another observable: $A_{
m SL}^s$

• Difference of $B \to \overline{B}$ vs. $\overline{B} \to B$ probability

$$A_{\rm SL} = \frac{\Gamma[\overline{B}_{\rm phys}^0(t) \to \ell^+ X] - \Gamma[B_{\rm phys}^0(t) \to \ell^- X]}{\Gamma[\overline{B}_{\rm phys}^0(t) \to \ell^+ X] + \Gamma[B_{\rm phys}^0(t) \to \ell^- X]} = \frac{1 - |q/p|^4}{1 + |q/p|^4} \approx -2\left(\left|\frac{q}{p}\right| - 1\right)$$

- Can be $\mathcal{O}(10^3)$ times SM
- $|A_{\rm SL}^s| > |A_{\rm SL}^d|$ possible (contrary to SM)
- In SM: $A_{\rm SL}^s \sim 3 \times 10^{-5}$ is unobservably small

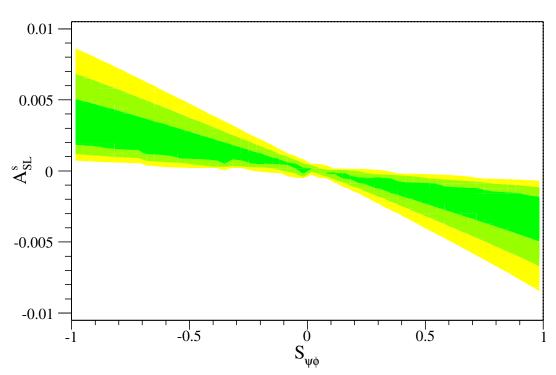
[see also: Buras *et al.*, hep-ph/0604057; Grossman, Nir, Raz, hep-ph/0605028]



Correlation between $S_{\psi\phi}$ and $A_{ m SL}^s$

• $A_{
m SL}^s$ and $S_{\psi\phi}$ are strongly correlated in $h_s, \sigma_s \gg \beta_s$ region [ZL, Papucci, Perez, hep-ph/0604112]

$$A_{\rm SL}^s = - \left| \frac{\Gamma_{12}^s}{M_{12}^s} \right|^{\rm SM} S_{\psi\phi} + \mathcal{O}\left(h_s^2, \frac{m_c^2}{m_b^2}\right)$$



• Correlation only if NP does not alter tree level processes — test assumptions

Summary for $B_s^0 - \overline{B}_s^0$ mixing

- Measurements @ Tevatron started to constrain NP in $(b \rightarrow s)_{\Delta F=2}$ transitions
- Significant NP contributions are possible nevertheless
- Need measurements of more observables: $S_{\psi\phi} \& A_{SL}^s$ (Don't need sensitivity to SM prediction to have important implications!)
- LHCb can distinguish between MFV and non-MFV scenarios in the early LHC era
- If deviations found, correlations between $S_{\psi\phi}$ and $A_{\rm SL}^s$ can help understand the nature of NP

Conclusions

• We learned a lot about meson mixings in the past 1.5 years

	$x = \Delta m / \Gamma$		y :	$=\Delta\Gamma/(2\Gamma)$	$A = 1 - q/p ^2$	
			SM theory data		SM theory	data
B_d	$\mathcal{O}(1)$	0.78	$y_s V_{td}/V_{ts} ^2$	-0.005 ± 0.019	$-(5.5\pm1.5)10^{-4}$	$(-4.7 \pm 4.6)10^{-3}$
B_s	$x_d V_{ts}/V_{td} ^2$	25.8	$\mathcal{O}(-0.1)$	-0.05 ± 0.04	$-A_d V_{td}/V_{ts} ^2$	$(0.3 \pm 9.3) 10^{-3}$
K	$\mathcal{O}(1)$	0.948	-1	-0.998	$4 \operatorname{Re} \epsilon$	$(6.6 \pm 1.6) 10^{-3}$
D	$\lesssim 0.01$	< 0.016	$\mathcal{O}(0.01)$	$y_{CP} = 0.011 \pm 0.003$	$< 10^{-4}$	$\mathcal{O}(1)$ bound only

Identities, neglecting CPV in mixing (not the most interesting info, but amusing):

	CP		lifetime		comments
	even	odd	short	long	
B_s	even	odd	even	odd	In SM even = light, odd = heavy
B_d	heavy quark limit: same as for B_s				Not directly known yet
K	light	heavy	light	heavy	Known before the SM ;-)
D	even	odd	even	odd	Unknown which is heavy / light

Before 2006, we only knew experimentally the Kaon line of this table!

Some things I'd like to know

- $D^0 \overline{D}^0$ mixing:
 - Values of Δm and $\Delta \Gamma$
 - Result of $K\pi$ fit with 5 parameters (allowing CPV in mixing, but not in decay)
 - Will CPV be observed? Is |q/p| near 1?
- $B_s^0 \overline{B}_s^0$ mixing:
 - Better constraint on / measurement of $S_{B_s \to \psi \phi}$
 - Improved bounds on $A_{\rm SL}$
 - Better lattice QCD results for Δm and $\Delta \Gamma$
- We can learn a lot more from improved measurements

Backup slides

SU(3) analysis of D mixing

• Want to study: $\langle \overline{D}^0 | T\{H_w, H_w\} | D^0 \rangle = \langle 0 | D T\{H_w, H_w\} D | 0 \rangle$ the field operator $D \in 3$ creates a D^0 or annihilates a \overline{D}^0 $H(\Delta C = -1) = (\overline{q}_i c)(\overline{q}_j q_k) \in 3 \times \overline{3} \times \overline{3} = \underbrace{\overline{15} + 6}_{\text{If 3rd gen. neglected}} + \overline{3} + \overline{3}$

SU(3) breaking is introduced by $\mathcal{M}_{j}^{i} = \operatorname{diag}(m_{u}, m_{d}, m_{s}) \sim \operatorname{diag}(0, 0, m_{s})$

• A pair of D operators or a pair of H's is symmetric, so $D_i D_j \in 6$ and $H_k^{ij} H_n^{lm} \in \left[(\overline{15} + 6) \times (\overline{15} + 6) \right]_S \to \overline{60} + 42 + 15'$

0. Since there is no $\overline{6}$ in $H_w H_w \Rightarrow$ mixing vanishes in SU(3) limit

- 1. $DD\mathcal{M} \in 6 \times 8 = 24 + \overline{15} + 6 + \overline{3} \implies$ no invariants with $H_w H_w$ at order m_s
- **2.** $DDMM \in 6 \times (8 \times 8)_S = 6 \times (27 + 8 + 1) = 60 + \overline{24} + \overline{15'} + \dots$

• $D^0 - \overline{D}^0$ mixing only arises at order $m_s^2 / \Lambda_{\chi SB}^2$ (if SU(3) violation is perturbative) [Falk *et al.*, hep-ph/0110317]

Parameterization of NP in mixing

• Assume: (i) 3×3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM

Concentrate on NP in mixing amplitude; two new param's for each neutral meson:

$$M_{12} = \underbrace{M_{12}^{\text{SM}} r_q^2 e^{2i\theta_q}}_{\text{total}} \equiv \underbrace{M_{12}^{\text{SM}} (1 + h_q e^{2i\sigma_q})}_{\text{conv} \text{to relate to model}}$$

easy to relate to data

easy to relate to models

• Observables sensitive to $\Delta F = 2$ new physics:

$$\begin{split} \Delta m_{Bq} &= r_q^2 \,\Delta m_{Bq}^{\rm SM} = |1 + h_q e^{2i\sigma_q} |\Delta m_q^{\rm SM} \\ S_{\psi K} &= \sin(2\beta + 2\theta_d) = \sin[2\beta + \arg(1 + h_d e^{2i\sigma_d})] \\ S_{\rho\rho} &= \sin(2\alpha - 2\theta_d) \\ S_{Bs \to \psi\phi} &= \sin(2\beta_s - 2\theta_s) = \sin[2\beta_s - \arg(1 + h_s e^{2i\sigma_s})] \\ A_{\rm SL}^q &= {\rm Im}\left(\frac{\Gamma_{12}^q}{M_{12}^q r_q^2 e^{2i\theta_q}}\right) = {\rm Im}\left[\frac{\Gamma_{12}^q}{M_{12}^q (1 + h_q e^{2i\sigma_q})}\right] \\ \Delta \Gamma_s^{CP} &= \Delta \Gamma_s^{\rm SM} \cos^2(2\theta_s) = \Delta \Gamma_s^{\rm SM} \cos^2[\arg(1 + h_s e^{2i\sigma_s})] \end{split}$$

• Tree-level constraints unaffected: $|V_{ub}/V_{cb}|$ and γ (or $\pi - \beta - \alpha$)

