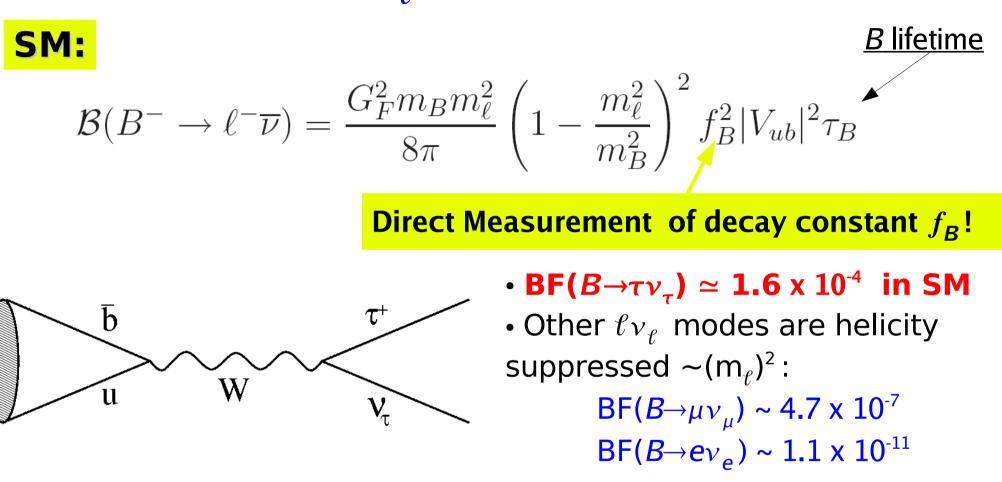


Review of B_u leptonic decays

Stefano Villa, EPF Lausanne

Flavor Physics and CP Violation Conference Bled, May 12-16, 2007

Summary

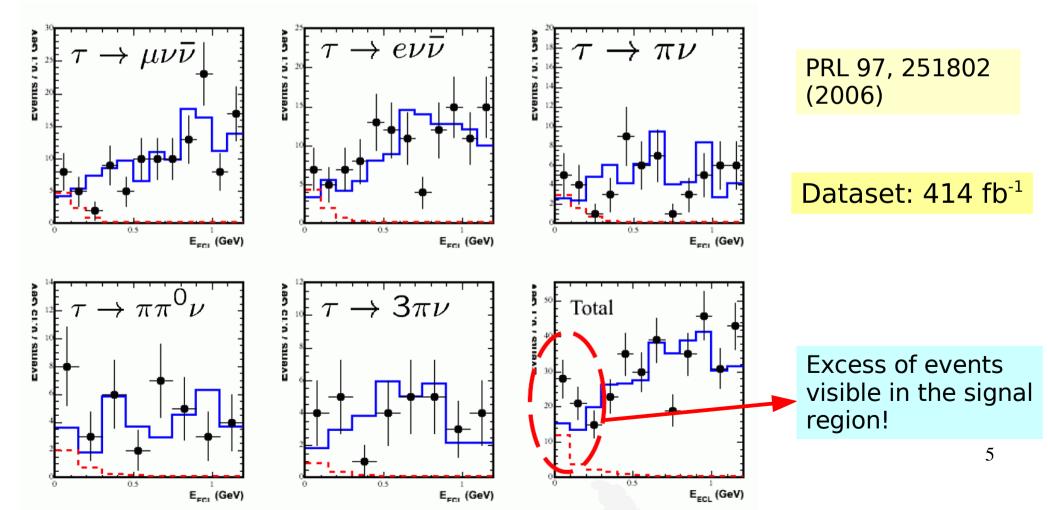

- $B \rightarrow \ell \nu_{\ell}$
 - Motivation
 - $B \rightarrow \tau v_{\tau}$
 - → Belle's analysis
 - BaBar's analyses: <u>semileptonic and hadronic tags</u>
 - Constraints on charged Higgs
 - → future prospects
 - $B \rightarrow e v_e$, $B \rightarrow \mu v_{\mu}$ at Belle and BaBar
- $B \rightarrow \ell v_{\ell} \gamma$
- Summary of results

I will assume you all know what Belle, BaBar, CLEO, $\rm M_{_{bc}},\,m_{_{ES}},\,\Delta E$ are...

HOT AT FPCP07

 $B^+ \to \ell^+ \nu_{\ell}$

$B^+ \rightarrow \ell^+ \nu_{\ell}$: motivation

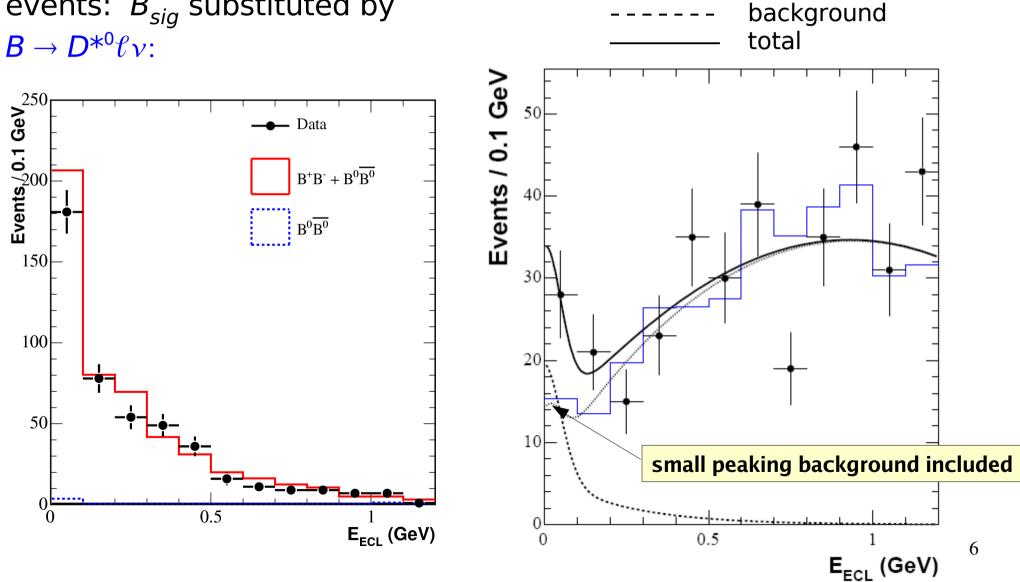


Possible enhancements of BF in New Physics: •Charged Higgs models: can explore the $(M_H, \tan\beta)$ plane.

Theoretically very clean, experimentally difficult: 1 neutrino for e, μ , 2 or more for τ mode: must reconstruct the other side B!

$B^+ \rightarrow \tau^+ \nu_{\tau}$ at Belle: analysis

- Reconstruct the companion *B* in exclusive $\overline{D^{(*)0}h^+}$ and $\overline{D^{(*)0}D^{(*)+}}_s$ channels to get a pure (55%) *B*⁺*B*⁻ sample (6.8x10⁵ evts)
- Reconstruct signal from remaining particles in the event
- τ lepton reconstructed in 5 decay modes (81% of all modes)
- Final selection based on remaining energy in ECL: $E_{ECL} \approx 0$ for signal



$B^+ \rightarrow \tau^+ \nu_{\tau}$ at Belle: the fit

FIT RESULT:

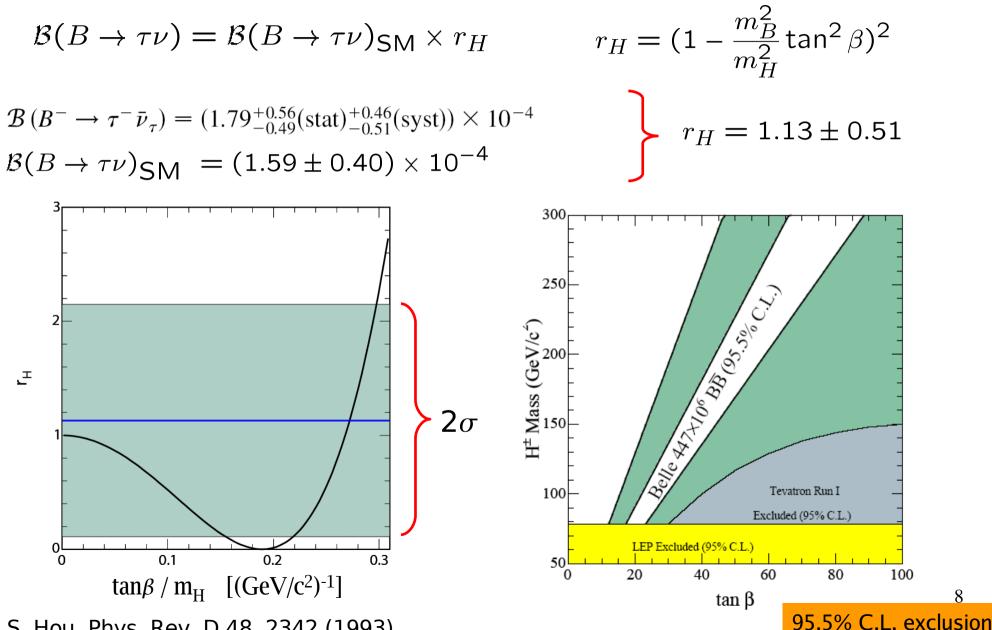
signal

To validate the E_{ECL} cut, use a control sample of double tagged events: B_{sig} substituted by $B \rightarrow D^{*0} \ell \nu$:

$B^+ \rightarrow \tau^+ \nu_{\tau}$ at Belle: results

	$N_{ m obs}$	N_s	N_b	Σ
$\mu^- \bar{\nu}_\mu \nu_\tau$	13	$5.6^{+3.1}_{-2.8}$	$8.8^{+1.1}_{-1.1}$	2.2σ
$e^- \bar{\nu}_e \nu_{\tau}$	12	$4.1^{+3.3}_{-2.6}$	$9.0^{+1.1}_{-1.1}$	1.4σ
$\pi^- u_{ au}$	9	$3.8^{+2.7}_{-2.1}$	$3.9^{+0.8}_{-0.8}$	2.0σ
$\pi^-\pi^0 u_ au$	11	$5.4^{+3.9}_{-3.3}$	$5.4^{+1.6}_{-1.6}$	1.5σ
$\pi^-\pi^+\pi^-\nu_\tau$	9	$3.0^{+3.5}_{-2.5}$	$4.8^{+1.4}_{-1.4}$	1.0σ

First evidence of a purely leptonic B decay


systematics included

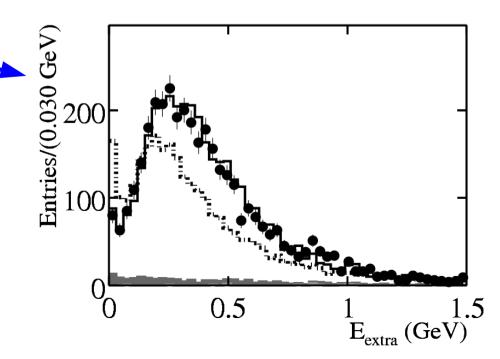
BELLE result	SM:
$BF(B \to \tau v_{\tau}) = (1.79^{+0.56}_{-0.49} \text{ (stat)}^{+0.46}_{-0.51} \text{ (syst)) x10^{-4}}$	$BF(B \rightarrow \tau v_{\tau}) = (1.59 \pm 0.40) \times 10^{-4}$
-0.49 - 0.51 - 0.51	$f_B = 0.216 \pm 0.022 \text{ GeV}$
$f_B = 0.229^{+0.036}_{-0.031}$ (stat) $^{+0.034}_{-0.037}$ (syst) GeV	from lattice QCD: HPQCD, Phys. Rev. Lett. 95, 212001 (2005)

obtained using $|V_{ub}|=(4.39\pm0.33)\times10^{-3}$ (HFAG) First direct determination of f_B 7

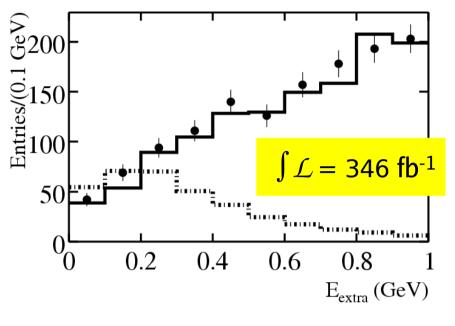
$B^+ \rightarrow \tau^+ \nu_{\tau}$: constraints on BSM

Constraint on Charged Higgs (two Higgs doublet model, type II):

8

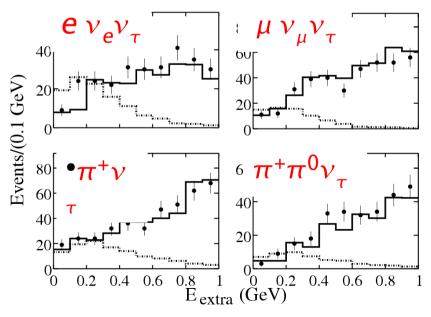

W.S. Hou, Phys. Rev. D 48, 2342 (1993)

$B^+ \rightarrow \tau^+ \nu_{\tau}$: Babar's semileptonic tag analysis


UPDATED – HOT at FPCP07 - See talk by A. Gritsan on Sunday.

• Exclusive reconstruction of B_{tag} in $B^- \to D^0 \ell^- v_\ell X$ ($X = \pi^0 \text{ or } \gamma$) with $\ell = e, \mu$ and $D^0 \to K^- \pi^+$, $K^- \pi^+ \pi^- \pi^+$, $K^- \pi^+ \pi^0$, $K_s^0 \pi^+ \pi^-$.

- Higher efficiency, but lower purity than $D^{*0}\ell \bar{\nu}_{\ell}$
- Signal: $\tau^+ \rightarrow e^+ v_e \bar{v}_{\tau}, \mu^+ v_{\mu} \bar{v}_{\tau}, \pi^+ \bar{v}_{\tau}, \pi^+ \pi^0 \bar{v}_{\tau}, 71\%$ of total
- Most powerful separation signal-background using E_{extra} : CM energy of neutrals and tracks not associated with either tag or signal.
- Mode dependent signal regions: $E_{extra} < 0.25 0.48 \text{ GeV}$
- Tag B yield and E_{extra} validated with double tagged events
- Expected background evaluated by extrapolating data in sidebands in E_{extra} with same ratio as in MC.



$B^+ \rightarrow \tau^+ \nu_{\tau}$: Babar's semileptonic tag results

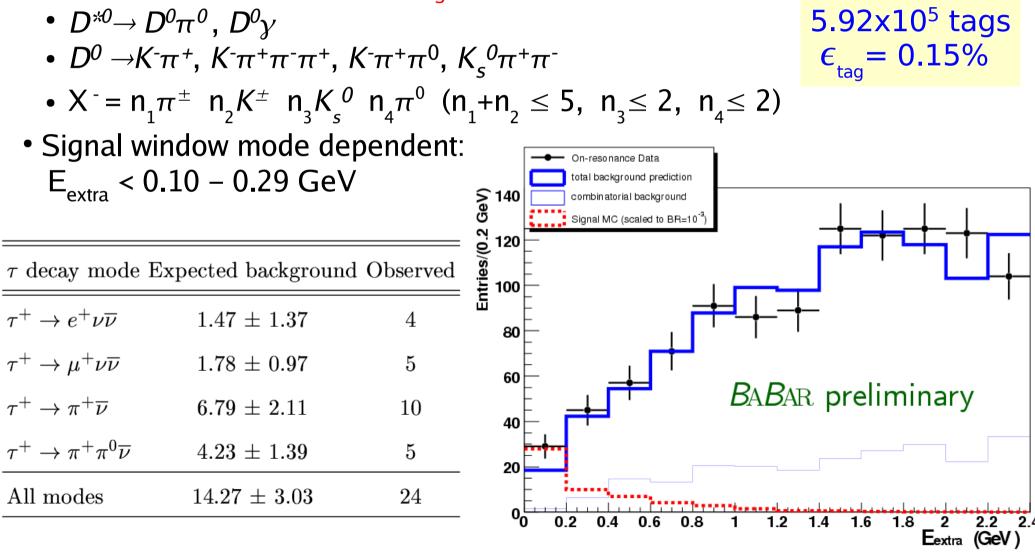
$\overline{\tau}$	Expected background	Observed events
decay mode	events	in on-resonance data
$\tau^+ \to e^+ \nu \overline{\nu}$	44.3 ± 5.2	59
$ au^+ ightarrow \mu^+ u \overline{ u}$	39.8 ± 4.4	43
$\tau^+ \to \pi^+ \overline{\nu}$	120.3 ± 10.2	125
$\tau^+ \to \pi^+ \pi^0 \overline{\nu}$	17.3 ± 3.3	18
All modes	221.7 ± 12.7	245

BaBar

 $\mathcal{B}(B^+ \to \tau^+ \nu) = (0.9 \pm 0.6 (\text{stat.}) \pm 0.1 (\text{syst.})) \times 10^{-4}$

$${\cal B}(B^+ o au^+
u) < 1.7 imes 10^{-4}$$
 90% CL

 $f_B \cdot |V_{ub}| = (7.2^{+2.0}_{-2.8} (\text{stat.}) \pm 0.2 (\text{syst.})) \times 10^{-4} \,\text{GeV}$


Central value extracted using a likelihood ratio computed from Poisson probabilities. Upper limit obtained with toy experiments and frequentist interpretation.

Signal above normalised to BF=10⁻³

$B^+ \rightarrow \tau^+ \nu_{\tau}$: Babar's hadronic tag

NEW – HOT at FPCP07 - See talk by A. Gritsan on Sunday

- \bullet Same luminosity, same τ modes and general strategy as semileptonic tag.
- Exclusive reconstruction of B_{tag} in $B^- \rightarrow D(^*)^0 X^-$:

$B^+ \rightarrow \tau^+ \nu_{\tau}$: Babar's hadronic & combination BaBar : hadronic tag results

$$\mathcal{B}(B^+ \to \tau^+ \nu) = 1.8^{+1.0}_{-0.9}(\text{stat.+bkg}) \pm 0.3(\text{syst.})) \times 10^{-4}$$

 $f_B \cdot |V_{ub}| = (10.1^{+2.8}_{-2.5}(\text{stat.}) \pm 0.8(\text{syst.})) \times 10^{-4} \text{ GeV}$

Significance: 2.2 σ (2.7 σ without bkg. uncertitude)

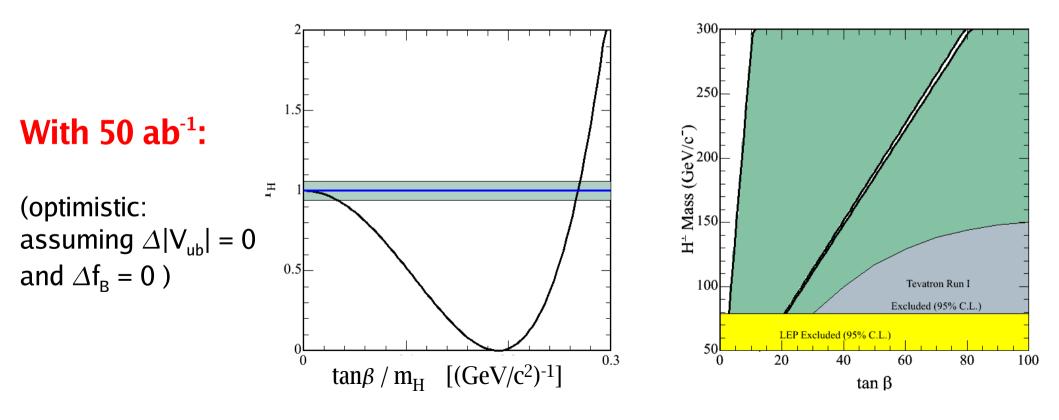
Combine likelihoods of semileptonic and hadronic *BaBar's* analyses:

$$\mathcal{B} = (1.20^{+0.40+0.29}_{-0.38-0.30} \pm 0.22) \times 10^{-4}$$
(stat.) (bkg.) (eff.)

Significance: 2.6 σ (3.2 σ stat.)

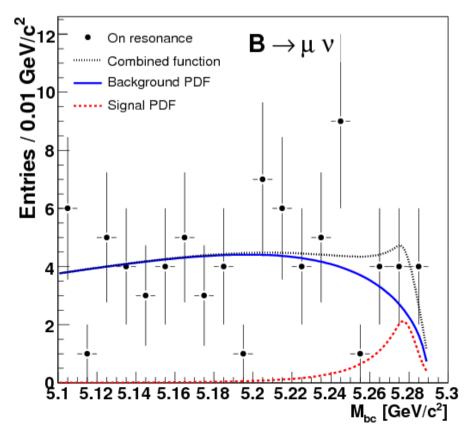
MY **quick BOTE** combination of Belle and BaBar (just Gaussian weighted average):

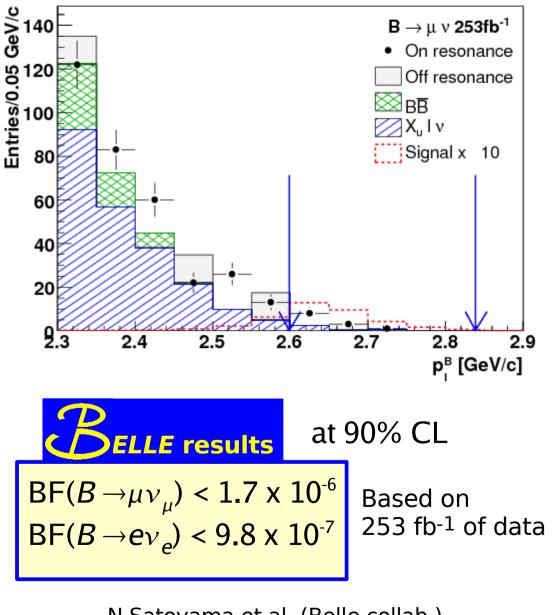
 $BF(B \rightarrow \tau v_{\tau}) = (1.41 \pm 0.43) \times 10^{-4}$

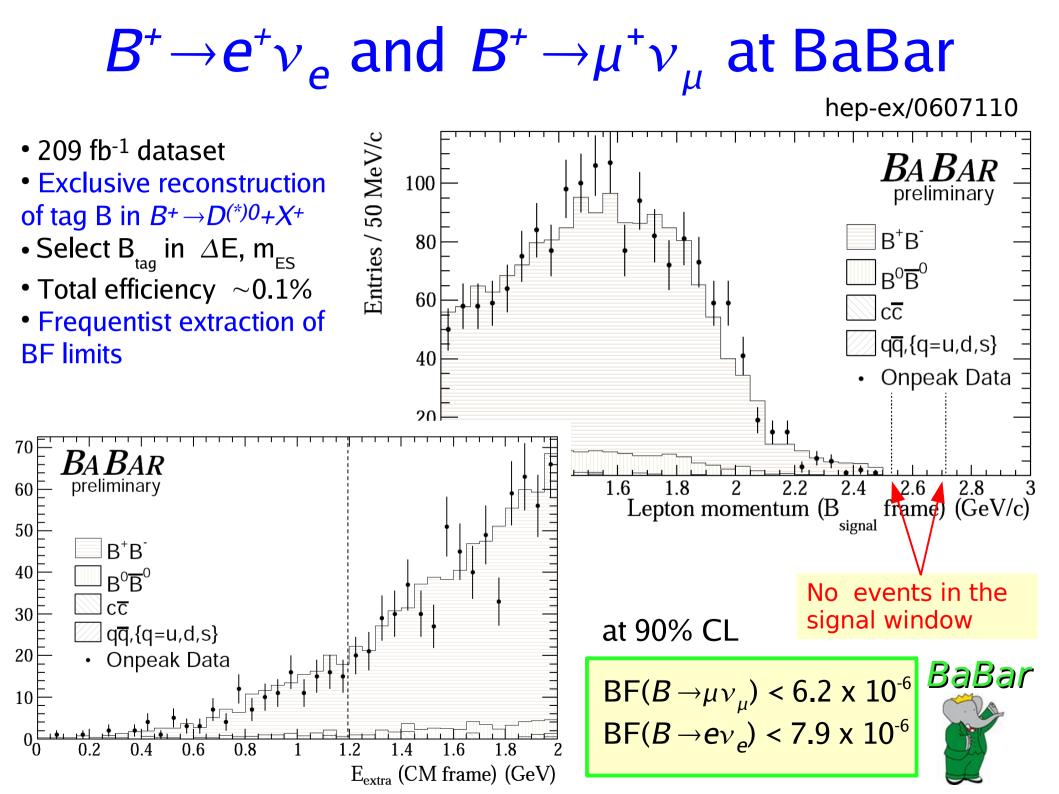

 $\check{\mathfrak{G}}_{400}$ m_{H^+} vs. anetaa[#] 350 300 250E 200E 150E excluded 95% C. 100E 20 40 50 30 60 70 10 100 tanß shown above direct LEP limit

See talk by H. Lacker on Monday for constraints on ρ , η plane

Future prospects for $B^+ \rightarrow \tau^+ \nu_{\tau}$

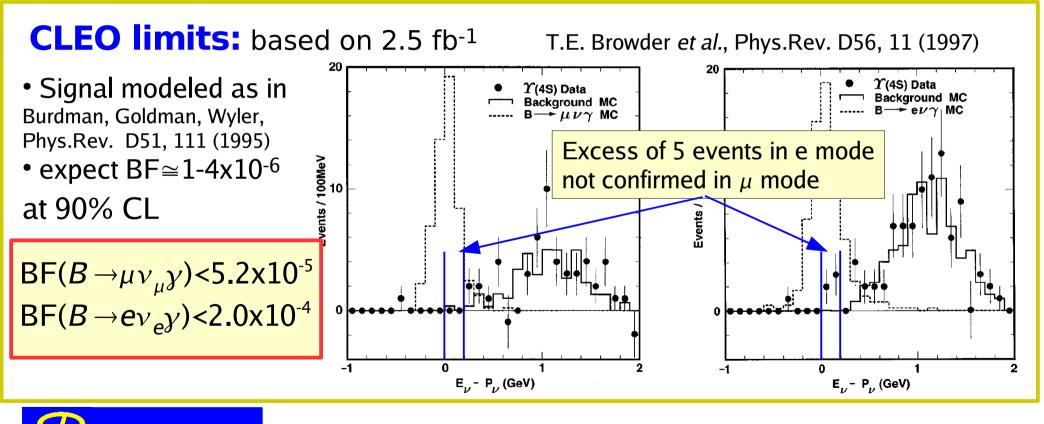

Extrapolating the current results to super-B factory luminosities: (assuming $\Delta f_B(LQCD) = 5\%$)


Lum.	$\Delta B(B \rightarrow \tau v)_{exp}$	$\Delta V_{ub} $
414 fb ⁻¹	36%	7.5%
5 ab-1	10%	5.8%
50 ab-1	3%	4.4%


$B^+ \rightarrow e^+ v_e$ and $B^+ \rightarrow \mu^+ v_\mu$ at Belle

- Inclusive reconstruction of tag B
- One highly energetic lepton
- Large missing *E* and *p*
- Signal window defined on ΔE and $M_{\rm bc}$ of the companion B
- Cut on lepton momentum in *B* rest frame

N.Satoyama et al. (Belle collab.) Phys. Lett. B 647, 67 (2007) 14



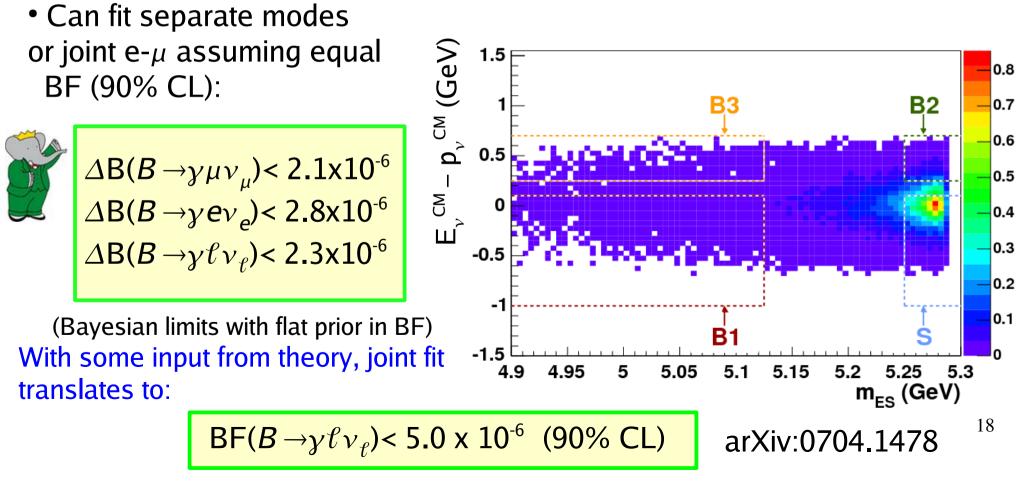
 $B^{+} \to \ell^{+} \nu_{\ell} \gamma$

$B^+ \rightarrow \ell^+ \nu_{\ell} \gamma$: motivation & "old" limits

PRO: The presence of the photon can lift helicity suppression; BFs are enhanced and independent of lepton flavour up to $(m_{\ell} / m_{R})^{2}$

CON: it is not as theoretically "clean" as purely leptonic modes

presented at ICHEP04, unpublished: hep-ex/0408132


 $\mathsf{BF}(B \to \mu \nu_{\mu} \gamma) < 2.2 \times 10^{-5} \quad \mathsf{BF}(B \to e \nu_{e} \gamma) < 2.3 \times 10^{-5}$

ELLE results

based on 140 fb⁻¹⁷

$B^+ \rightarrow \ell^+ \nu_{\ell} \gamma$: *BaBar* analysis

- Use different theoretical framework.
- Measure some partial BF, in a restricted region of phase space: 1.875 < E_{ℓ}^{CM} <2.850GeV, 0.45 < E_{ν}^{CM} <2.35GeV, cos $\theta_{\ell\nu}$ <-0.36
- Lumi: 210.5 fb⁻¹, reconstruct inclusively the recoiling B, extract signal from 2D ML fit based on event counts in signal window and sidebands:

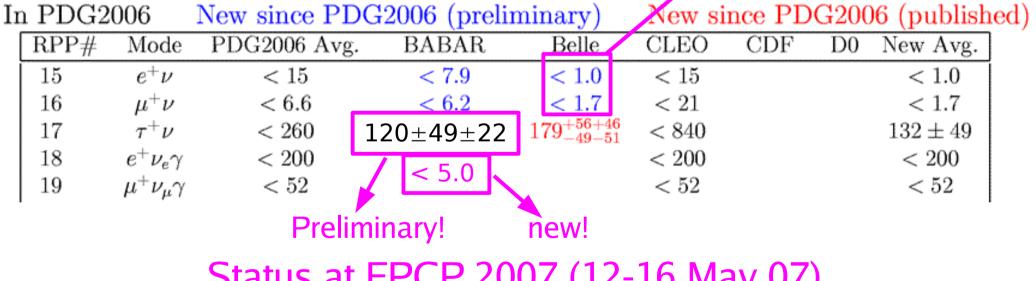
Summary

Heavy Flavor Averaging Group March 2007

Compilation of B Leptonic Branching Fractions All branching fractions are in units of 10^{-6}

In PDG2006 New since PDC		G2006 (preliminary)		New since PDG2006 (publish			ed)			
	RPP#	Mode	PDG2006 Avg.	BABAR	Belle	CLEO	CDF	D0	New Avg.	
	15	$e^+ u$	< 15	< 7.9	< 1.0	< 15			< 1.0	
	16	$\mu^+ u$	< 6.6	< 6.2	< 1.7	< 21			< 1.7	
	17	$ au^+ u$	< 260	$88\pm68\pm11$	179_{-49-51}^{+56+46}	< 840			132 ± 49	
	18	$e^+ u_e \gamma$	< 200			< 200			< 200	
	19	$\mu^+ u_\mu\gamma$	< 52			< 52			< 52	

Status as of March 2007

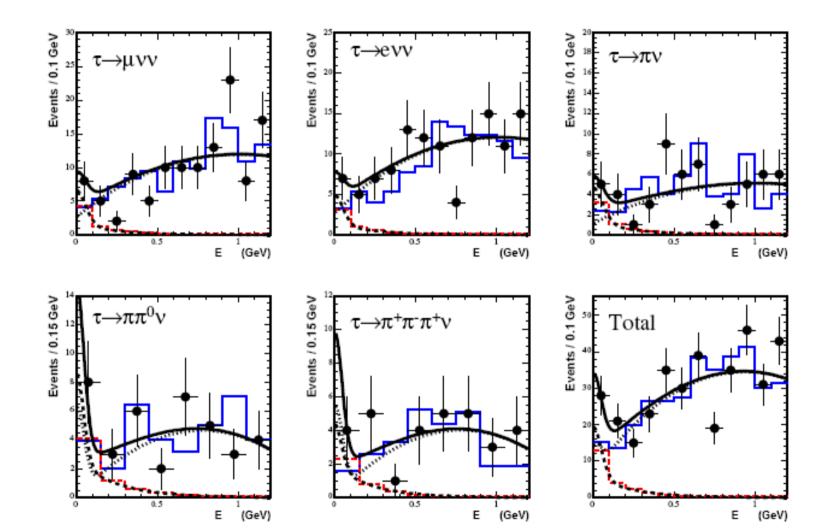

Summary

Heavy Flavor Averaging Group

March 2007

published!

Compilation of *B* Leptonic Branching Fractions All branching fractions are in units of 10^{-6}


Status at FPCP 2007 (12-16 May 07)

Conclusions

- $B \rightarrow \tau \nu_{\tau}$: first evidence of a purely leptonic *B* decay
 - Measured branching fraction consistent with SM prediction
 - → First direct determination of the B decay constant
 - → Set constraints on $M_{\rm H}$ -tan β in MSSM
- $B \rightarrow e \nu_e$, $B \rightarrow \mu \nu_{\mu}$: limits start to get close (factor 3-4) to SM for the muon mode
- $B^+ \rightarrow \ell^+ \nu_{\ell} \gamma$: also getting close to SM predictions... but comparisons are more difficult due to model dependence
- Still a lot to come from existing experiments and hopefully a Super-B factory!

BACKUP SLIDES

Belle $B^+ \rightarrow \tau^+ \nu_{\tau}$, fits to individual modes

Belle $B^+ \rightarrow \tau^+ \nu_{\tau}$, syst. unc.

• Signal selection efficiencies

Source	$\mu^- \nu \overline{\nu} (\%)$	$e^- \nu \overline{\nu} (\%)$	$\pi^-\nu(\%)$	$\pi^{-}\pi^{0}\nu(\%)$	$\pi^{+}\pi^{-}\pi^{+}\nu(\%)$
Tracking	1.0	1.0	1.0	1.0	3.0
au decay BR	0.3	0.3	1.0	0.6	1.1
MC statistics	0.6	0.6	0.7	1.0	2.0
Lepton ID	2.1	2.1	_	-	-
π^0 reconstruction	_	-	-	3	-
π^{\pm} ID	_	-	2.0	2.0	6.0

- Tag reconstruction efficiency : 10.5% Difference of yields between data and MC in the $B \rightarrow D^{*0} \ell v$ control sample
- Number of BB : 1%
- Signal yield : +22.5% -25.7%

- signal shape ambiguity estimated by varying the signal PDF parameters

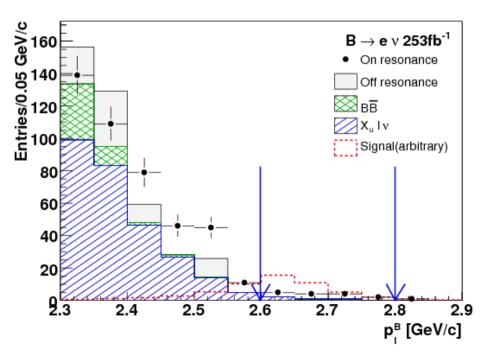
- BG shape : changing PDF
- Total systematic uncertainty: +25.5% -28.4%

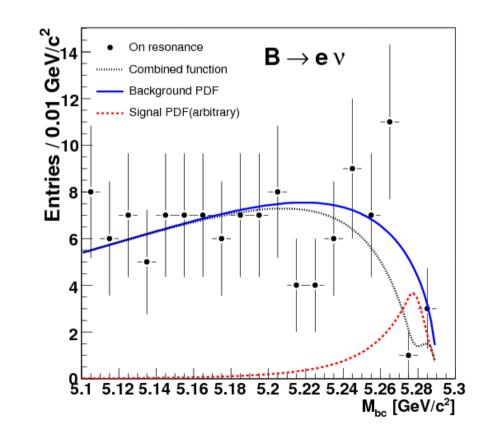
BaBar B⁺ $\rightarrow \tau^+ \nu_{\tau}$, hadronic tag

Summary of signal selection:

Variable	$\tau^+ ightarrow e^+ \nu \overline{ u}$	$\tau^+ \to \mu^+ \nu \overline{\nu}$	$\tau^+ \to \pi^+ \overline{\nu}$	$\tau^+ \to \pi^+ \pi^0 \overline{\nu}$
E_{extra} (GeV)	< 0.160	< 0.100	< 0.230	< 0.290
π^0 multiplicity	0	0	≤ 2	n.a.
Track multiplicity	1	1	≤ 2	1
$ cos heta^*_{TB} $	≤ 0.9	≤ 0.9	≤ 0.7	≤ 0.7
$p_{ m trk}^*({ m GeV}\!/c)$	< 1.25	< 1.85	> 1.5	n.a.
$cos heta^*_{ m miss}$	< 0.9	n.a	< 0.5	< 0.55
$p^*_{\pi^+\pi^0}(\operatorname{GeV}\!/c)$	n.a.	n.a.	n.a.	> 1.5
ρ quality	n.a.	n.a.	n.a.	< 2.0
E_{π^0} (GeV)	n.a.	n.a.	n.a.	> 0.250

$B^+ \rightarrow e^+ v_e$ and $B^+ \rightarrow \mu^+ v_{\mu}$ at Belle


Systematic uncertainties:


Details of selection and fit results:

Sources		Muon Mode	Electron Mode
$N_{B\bar{B}}$		1.1%	1.1%
Signal Efficiency	Lepton ID	4.4%	1.1%
	Tracking	1.0%	1.0%
	MC statistics	2.3%	2.1%
	$B^+ \to D^0 \pi^+$	3.6%	3.6%
$M_{\rm bc}$ Shape	Signal	6.5%	3.2%
	Background	8.1%	15.7%
Total		12.2%	16.7%

	Muon Mode	Electron Mode
Signal Efficiency (fit region)	$3.15 \pm 0.07\%$	$3.86 \pm 0.08\%$
Signal Efficiency (signal region)	$2.18\pm0.06\%$	$2.39 \pm 0.06\%$
Observed in Signal region [events]	12	15
Expected background [events]	7.4 ± 1.0	13.4 ± 1.4
Signal yield [events]	4.1 ± 3.1	-1.8 ± 3.3
Significance	1.3	_
SM Prediction [events]	2.8 ± 0.2	$(7.3 \pm 1.4) \times 10^{-5}$

Plots for the electron mode:

$B^+ \rightarrow \ell^+ \nu_{\ell} \gamma$: more theory

TWO CONTRIBUTIONS:

1. Structure-Dependent (SD) model: photon produced in transition from scalar B to off-shell vector (B*) or axial-vector (B') meson.

2. Internal bremsstrahlung (IB), (emission in initial or final state particle) is suppressed by helicity conservation

$$\mathcal{B}(B^+ \to \gamma \ell^+ \nu_\ell) = \alpha \frac{G_F^2 |V_{ub}|^2}{288\pi^2} f_B^2 \tau_B m_B^5 \left(\frac{Q_u}{\lambda_B} - \frac{Q_b}{m_b}\right)^2$$

- Q_i : charge of quark i
- $\lambda_{\rm B}$: first inverse moment of B light cone distribution amplitude (enters calculations of BF of hadronic *B* decays) ~ $\Lambda_{\rm OCD}$

$$\Delta \mathcal{B} = \alpha \frac{G_F^2 |V_{ub}|^2}{32\pi^4} f_B^2 \tau_B m_B^3 \left[a + bL + cL^2 \right]$$

 $L = (m_B/3)(1/\lambda_B + 1/(2m_b))$

a, b, c: (model independent) computable constants

$B^+ \rightarrow \ell^+ \nu_{\ell} \gamma$ at BaBar: details

Fit results:

Muon channel						
	\mathbf{S}	B1	B2	B3		
Fit cont.	20.0 ± 11.8	116.3 ± 14.7	42.6 ± 12.8	213.2 ± 42.1		
Off-peak	23.0 ± 16.2	158.1 ± 40.8	17.4 ± 12.3	219.7 ± 45.8		
Fit $B\overline{B}$	$59.1\pm$ 8.5	61.0 ± 9.9	$61.7\pm$ 9.8	286.6 ± 46.6		
Fit signal	-5.2 ± 13.8	-1.3 ± 3.4	$-0.4\pm$ 1.0	-0.2 ± 0.5		
Total fit	74.0 ± 8.1	176.0 ± 12.4	103.9 ± 9.8	500.0 ± 22.1		
On-peak	73.0 ± 8.5	$170.0\!\pm\!13.0$	111.0 ± 10.5	498.0 ± 22.3		

Electron channel						
	S	B1	B2	B3		
Fit cont.	$55.4 {\pm} 20.5$	181.1 ± 16.2	48.9 ± 14.1	356.7 ± 54.4		
Off-peak	$41.4 {\pm} 20.7$	239.7 ± 48.9	79.0 ± 27.9	294.5 ± 52.9		
Fit $B\overline{B}$	69.2 ± 8.5	59.2 ± 8.5	$140.1\!\pm\!15.5$	393.8 ± 57.2		
Fit signal	-8.4 ± 22.3	-1.5 ± 3.9	$-1.2\pm$ 3.3	-0.4 ± 1.0		
Total fit	116.2 ± 10.3	238.7 ± 14.5	187.7 ± 12.5	750.2 ± 26.5		
On-peak	$119.0 \!\pm\! 10.9$	$231.0 \!\pm\! 15.2$	$176.0 \!\pm\! 13.3$	764.0 ± 27.6		

Systematics:

Multiplicative	Muon	Electron	Joint
Tracking efficiency	1.3%	1.3%	1.3%
Particle ID	3.5%	2.2%	2.1%
Neutral reconstruction	1.6%	1.6%	1.6%
Selection efficiency	6.0%	5.0%	6.0%
B counting	1.1%	1.1%	1.1%
Charged to neutral B ratio	9.4%	9.4%	9.4%
Additive			
Shape of Δ_{EP} vs. $m_{\rm ES}$	0.3	0.2	0.3
$\eta \operatorname{mode} \mathrm{BF}$	0.3	0.1	0.2
π, ρ mode BF, ff	0.3	0.4	0.4
$B \to X_u \ell^+ \nu_\ell \text{ BF}$	0.4	0.2	0.3