Theoretical Tool II factorization approaches

Hsiang-nan Li Academia Sinica, Taiwan presented at 5th FPCP Bled, May. 15, 2007

Outlines

- Introduction (lain's talk)
- Collinear vs k_T factorization
- B decays in QCDF, SCET_O, PQCD
- Recent results
- Comments

Factorization assumption vs factorization theorem

- FA FT
- of processof dynamics
- $A(B \rightarrow M_1M_2) \propto f_{M2}F^{BM1}$ $\phi_B \otimes \phi_{M1} \otimes \phi_{M2} \otimes H$
- $Vac \rightarrow M_2$, $B \rightarrow M_1$ nonpert perf
- Factorizable: in the above form
- Nonfactorizable: not in the above form
- This nonfactorizable amplitude is factorizable.

Collinear vs k_T factorization

Collinear: QCDF, SCET

K_T: PQCD

Simplest example

- $\pi^0(P_1)\gamma^* \rightarrow \gamma(P_2)$
- At leading order (LO)

• Initial parton $k=(xP_1^+,0,0_T)$, $Q^2=2P_1 \cdot P_2$

LO factorization

- Collinear factorization, k'=(x'P₁+,0,0_T)
- $G^{(0)}(x,Q^2) = \int dx' \phi^{(0)}(x;x') H^{(0)}(x',Q^2)$
- No gluon exchange, $\phi^{(0)} = \delta(x-x')$,
- $H^{(0)} \propto 1/(P_2 k')^2 \propto 1/(x'Q^2)$
- k_T factorization, k'=(x'P₁+,0,k'_T)
- $G^{(0)}(x,Q^2) = \int dx' dk'_T \phi^{(0)}(x;x',k'_T) H^{(0)}(x',k'_T,Q^2)$
- No gluon exchange, $\phi^{(0)} = \delta(x-x')\delta(k'_T)$,
- $H^{(0)} \propto 1/(x'Q^2+k'_T^2) \rightarrow 1/(x'Q^2)$
- H⁽⁰⁾ does not acquire k_T dependence

NLO collinear factorization

- Collinear factorization: k'=(k++l+,0,0_T)
- $G^{(1)}(x,Q^2) = \int dx' \phi^{(1)}(x;x') H^{(0)}(x',Q^2) + H^{(1)}(x,Q^2)$
- One gluon exchange, $\phi^{(1)} \propto \delta(x-x'+l^+/P_1^+)$,
- Collinear gluon exchange modifies longitudinal parton momentum in H⁽⁰⁾ (transverse momentum set to zero).

NLO k_T factorization

- k_T factorization: k'=(k+ + l+,0,l_T)
- $G^{(1)}(x,Q^2) = \int dx' dk'_T \phi^{(1)}(x;x',k'_T) H^{(0)}(x',k'_T,Q^2)$
- $+H^{(1)}(x,Q^2)$
- One gluon exchange, $\phi^{(0)} \propto \delta(x-x'+l^+/P_1^+)\delta(k'_T-l_T^-),$
- Nontrivial k_T dependence in $H^{(0)} \propto 1/(x'Q^2 + k'_T^2)$ at this order
- Collinear gluon exchange modifies both parton longitudinal and transverse momenta in H⁽⁰⁾

H⁽¹⁾ in k_T factorization

- At NLO, partons in H⁽¹⁾ are on shell
- Beyond NLO, H⁽¹⁾ acquires nontrivial k_T dependence (Nandi, Li 07)

Initial parton $k=(xP_1^+,0,k_T)$ in $G^{(1)}$ and $\phi^{(1)}$

- $H^{(1)}(x,k_T,Q^2)=G^{(1)}(x,k_T,Q^2)$ - $\int dx'dk'_T \phi^{(1)}(x,k_T;x',k'_T)H^{(0)}(x',k'_T,Q^2)$
- IR divergences cancel between G⁽¹⁾ and φ⁽¹⁾

Gauge invariance

- Partons are off-shell by k_T². Both quark diagrams (full QCD) and effective diagrams (wave function) depend on gauge.
- Gauge dependences in G⁽¹⁾ and φ⁽¹⁾ cancel, and H⁽¹⁾ is gauge-invariant.
- Hard kernel is infrared-safe, gaugeinvariant, so are predictions from k_T factorization.

B decays in QCDF, SCET_O, PQCD

See 0705.1624 by Silvestrini

End-point singularity

• End-point singularity in collinear factorization for $B\rightarrow\pi$ form factor

But not in k_⊤ factorization

Collinear gluons generate k_T

$B\rightarrow\pi$ form factor

- In QCDF and SCET (collinear factorization) Form factor $F^{B\pi} = \zeta^{B\pi}$ (with singularity) $+\zeta_J^{B\pi}$ $\zeta^{B\pi}$ nonfactorizable, $\zeta_J^{B\pi}$ factorizable different orders in α_s : α_s^0 and α_s
- In PQCD (k_T factorization) and SCET_O (Manohar, Stewart 06) Both $\zeta^{B\pi}$ and $\zeta_J^{B\pi}$ are factorizable same order in α_s
- Regularization of singularity, log of cutoff at every order, $\ln^2(m_{/k_{\perp}})$ in PQCD and $\ln\mu_{\pm}$ in SCET , need to be resummed.

Annihilation in QCDF, SCET_O, PQCD

- Applied to charmless nonleptonic decays, scalar penguin annihilation is treated as:
- Parameter in QCDF due to end-point singularity (nonfactorizable), $X_A = \ln(m_B/\Lambda)[1 + \rho_A \exp(i\phi_A)]$
- What mechanism generates φ_A?
- Factorizable in SCET_O, but real (ALRS 06). Strong phase appears at $\alpha_s^2 \Lambda/m_h$.
- Phase generated by nonfactorizable contribution at $\alpha_s m_0 \Lambda / m_b^2$ (Chay, Li, Mishima in preparation)?

Imaginary in PQCD

Bander-Silverman-Soni Mechanism for strong phase

$$\frac{1}{xm_{B}^{2}-k_{T}^{2}+i\epsilon}=\frac{P}{xm_{B}^{2}-k_{T}^{2}}-i\pi\delta(xm_{B}^{2}-k_{T}^{2}).$$

Imaginary annihilation! (Li, Mishima 06)

 Whether scalar penguin annihilation carries strong phase can be tested by comparing

$$A_{CP}(K^+\pi^0)$$
 $A_{CP}(K^+\rho^0)$

- Transition $B \rightarrow P$ $B \rightarrow V$
- Emission penguin a₄+a₆ a₄-a₆
- Annihilation is less, more important
- Real annihilation, $A_{CP}(K^+\pi^0) \approx A_{CP}(K^+\rho^0)$
- Imaginary annihilation, small large phase

$$A_{CP}(K^{+}\pi^{0}) << A_{CP}(K^{+}\rho^{0})$$

• Data (HFAG) 0.047 ± 0.026 $0.31^{+0.11}_{-0.10}$

Recent results

ΔS puzzle, Zupan's talk

$B(\pi^0\pi^0)$ puzzle?

- Large B($\pi^0\pi^0$) \approx 10⁻⁶ not understood.
- Complete O(α_s²) T^{II} (spectator scattering) in QCDF/SCET enhances C (Beneke, Yang 05; Beneke, Jager 05; 06).
- BR($\pi^0\pi^0$) can not be enhanced too much due to bound from data BR($\rho^0\rho^0$) $\approx 1.07 \times 10^{-6}$ (Li, Mishima 06).
- PQCD matches data B($\rho^0 \rho^0$), but gives B($\pi^0 \pi^0$)=(0.3^{+0.5}_{-0.2})× 10⁻⁶

$f_L(\phi K^*)$ puzzle? (Gritsan's talk)

- No "satisfactory" SM explanation, but...
- With annihilation (chirally enhanced, Chen, Keum, Li 02; Kagan 04) and small form factor A₀^{BK*} (Li 04), it is possible to accommodate data.
- $f_L(K^{*+}\rho^0) \neq f_L(K^{*0}\rho^+)$ dramatically may be a puzzle (tree not dominant) (Lu et al 06).

Mode	PDG2004 Avg.	BABAR	Belle
$K^{*+}\rho^0$	$0.96^{+0.04}_{-0.15} \pm 0.04$	$0.96^{+0.04}_{-0.15} \pm 0.05$	
$K^{*0}\rho^+$	$0.43 \pm 0.11^{+0.05}_{-0.02}$	$0.52 \pm 0.10 \pm 0.04$	$0.43 \pm 0.11^{+0.05}_{-0.02}$
ϕK^{*+}	0.50 ± 0.07	$0.46 \pm 0.12 \pm 0.03$	$0.52 \pm 0.08 \pm 0.03$
$\rho^+ \rho^0$	0.96 ± 0.06	$0.905 \pm 0.042^{+0.023}_{-0.027}$	$0.95 \pm 0.11 \pm 0.02$
$\omega \rho^+$	$0.88^{+0.12}_{-0.15} \pm 0.03$	$0.82 \pm 0.11 \pm 0.02$	

$A_{CP}(K\pi)$ puzzle? (Gronau's talk)

- Vertex correction in NLO PQCD gives large imaginary C, rotating T in K+π⁰,
 C/T≈ 0.3 exp(-80°)(Li, Mishima, Sanda 05)
- Alleviated, but not gone away completely

Hadronic B_s decays

- Test SU(3) or U-spin symmetry
- Framework basically the same as of B_{u,d} decays: QCDF (Beneke, Neubert 03), SCET (Williamson, Zupan 06), PQCD (Ali et al 07; Xiao et al)
- BR PQCD similar to BR QCDF, A_{CP}^{PQCD} opposite to A_{CP}^{QCDF} in sign
- PQCD predictions consistent with existing data, except:
- $B(B_s \rightarrow K^+\pi^-)$ twice of data, like $B(B_d \rightarrow \pi^+\pi^-)$
- $B(B_s \rightarrow \phi \phi) \approx 44 \times 10^{-6}$ too large.

Comments

- Factorization approaches are systematic tools, better not to be used for data fitting (S1,... S4, G in QCDF, charming penguin in SCET, BPRS 04)
- End-point singularities in emission and annihilation were not treated in a consistent way in QCDF.
- SCET_O is encouraging, counting rules consistent with PQCD. But need to deal with arbitrary $\ln \mu_{\pm}$. ($\ln^2 k_T$ resummed in PQCD).
- NLO, 1/m_B corrections not yet fully studied, crucial for identifying puzzles as new physics signals.

Back-up slides

k_T expansion

- Parton momentum k=(k₊,0,k_T)
- Large $x \sim O(1)$, k_T negligible twist-3 contribution

$$\frac{P-k}{(P-k)^{2}} \approx \frac{P-k^{+}}{(P-k^{+})^{2}} + \frac{P-k^{+}}{(P-k^{+})^{2}} k_{T} \frac{P-k^{+}}{(P-k^{+})^{2}}$$

• Small x, $xQ^2 \approx k_T^2$, different $k_T e^{x}$ pansion

$$\frac{P-k}{(P-k)^2} \approx \frac{P-k^+}{(P-k^+)^2 - k_T^2} + \frac{P-k^+}{(P-k^+)^2 - k_T^2} k_T \frac{P-k^+}{(P-k^+)^2 - k_T^2}$$

 Setting k_T to zero in cases with end-point singularity will be a too strong approximation.