Theoretical Tool II factorization approaches

Hsiang-nan Li
Academia Sinica, Taiwan presented at 5th FPCP Bled, May. 15, 2007

Outlines

- Introduction (lain's talk)
- Collinear vs k_{T} factorization
- B decays in QCDF, SCET ${ }_{0}$, PQCD
- Recent results
- Comments

Factorization assumption vs factorization theorem

- FA
- of process
- $A\left(B \rightarrow M_{1} M_{2}\right) \propto f_{M 2} F^{B M 1}$
- Vac $\rightarrow \mathrm{M}_{2}, \mathrm{~B} \rightarrow \mathrm{M}_{1}$

FT of dynamics
$\phi_{\mathrm{B}} \otimes \phi_{\mathrm{M} 1} \otimes \phi_{\mathrm{M} 2} \otimes \mathrm{H}$
nonpert

- Factorizable: in the above form
- Nonfactorizable: not in the above form
- This nonfactorizable amplitude is factorizable.

Collinear vs k_{T} factorization

Collinear: QCDF, SCET $K_{T}: P Q C D$

Simplest example

- $\pi^{0}\left(\mathrm{P}_{1}\right) \gamma^{*} \rightarrow \gamma\left(\mathrm{P}_{2}\right)$
- At leading order (LO)

$\begin{array}{lll}\text { Full QCD } & \text { Effective theory } & \text { Wilson coeff } \\ G^{(0)} & \text { Wave function } \phi^{(0)} & \text { Hard kernel H(0) }\end{array}$
- Initial parton $\mathrm{k}=\left(\mathrm{xP}_{1}{ }^{+}, 0,0_{\mathrm{T}}\right), \mathrm{Q}^{2}=2 \mathrm{P}_{1} \cdot \mathrm{P}_{2}$

LO factorization

- Collinear factorization, $\mathrm{k}^{\prime}=\left(\mathrm{x}^{\prime} \mathrm{P}_{1}{ }^{+}, 0,0_{\mathrm{T}}\right)$
- $G^{(0)}\left(x, Q^{2}\right)=\int d x^{\prime} \phi^{(0)}\left(x ; x^{\prime}\right) H^{(0)}\left(x^{\prime}, Q^{2}\right)$
- No gluon exchange, $\phi^{(0)}=\delta\left(x-x^{\prime}\right)$,
- $H^{(0)} \propto 1 /\left(P_{2}-k^{\prime}\right)^{2} \propto 1 /\left(x^{\prime} Q^{2}\right)$
- k_{T} factorization, $\mathrm{k}^{\prime}=\left(\mathrm{x}^{\prime} \mathrm{P}_{1}{ }^{+}, 0, \mathrm{k}_{\mathrm{T}}{ }^{\prime}\right)$
- $G^{(0)}\left(x, Q^{2}\right)=\int d x^{\prime} \mathrm{dk}^{\prime}{ }_{T} \phi^{(0)}\left(x ; x^{\prime}, k_{T}^{\prime}\right) H^{(0)}\left(x^{\prime}, k_{T}^{\prime}, Q^{2}\right)$
- No gluon exchange, $\phi^{(0)}=\delta\left(x-x^{\prime}\right) \delta\left(k_{T}^{\prime}\right)$,
- $H^{(0)} \propto 1 /\left(x^{\prime} \mathrm{Q}^{2}+\mathrm{k}_{\mathrm{T}}{ }^{2}\right) \rightarrow 1 /\left(\mathrm{x}^{\prime} \mathrm{Q}^{2}\right)$
- $\mathrm{H}^{(0)}$ does not acquire k_{T} dependence

NLO collinear factorization

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{G}^{(1)}}^{\mathrm{P}_{1}-\overline{\mathrm{k}}} \mathrm{P}_{2}
\end{aligned}
$$

- Collinear factorization: $\mathrm{k}^{\prime}=\left(\mathrm{k}^{+}+\mathrm{I}^{+}, 0,0_{T}\right) \quad$ IR finite
- $G^{(1)}\left(x, Q^{2}\right)=\int d x^{\prime} \phi^{(1)}\left(x ; x^{\prime}\right) H^{(0)}\left(x^{\prime}, Q^{2}\right)+H^{(1)}\left(x, Q^{2}\right)$
- One gluon exchange, $\phi^{(1)} \propto \delta\left(x-x^{\prime}+I^{+} / P_{1}{ }^{+}\right)$,
- Collinear gluon exchange modifies longitudinal parton momentum in $\mathrm{H}^{(0)}$ (transverse momentum set to zero).

$\mathrm{NLO}_{\mathrm{T}}$ factorization

- k_{T} factorization: $\mathrm{k}^{\prime}=\left(\mathrm{k}^{+}+\mathrm{I}^{+}, 0, \mathrm{l}_{\mathrm{T}}\right)$
- $G^{(1)}\left(x, Q^{2}\right)=\int d x^{\prime} d^{\prime}{ }_{T} \phi^{(1)}\left(x ; x^{\prime}, k_{T}^{\prime}\right) H^{(0)}\left(x^{\prime}, k_{T}^{\prime}, Q^{2}\right)$

$$
+H^{(1)}\left(x, Q^{2}\right)
$$

- One gluon exchange, $\phi^{(0)} \propto \delta\left(x-x^{\prime}+l^{+} / P_{1}{ }^{+}\right) \delta\left(k_{T}^{\prime}-l_{T}\right)$,
- Nontrivial k_{T} dependence in $H^{(0)} \propto 1 /\left(x^{\prime} Q^{2}+k_{T}^{\prime}{ }^{2}\right)$ at this order
- Collinear gluon exchange modifies both parton longitudinal and transverse momenta in $\mathrm{H}^{(0)}$

$\mathrm{H}^{(1)}$ in k_{T} factorization

- At NLO, partons in $\mathrm{H}^{(1)}$ are on shell
- Beyond NLO, $\mathrm{H}^{(1)}$ acquires nontrivial k_{T} dependence (Nandi, Li 07)

Initial parton $\mathrm{k}=\left(\mathrm{XP}_{1}{ }^{+}, 0, \mathrm{k}_{\mathrm{T}}\right)$ in $\mathrm{G}^{(1)}$ and $\phi^{(1)}$

- $H^{(1)}\left(x, k_{T}, Q^{2}\right)=G^{(1)}\left(x, k_{T}, Q^{2}\right)$
$-\int d x^{\prime} \mathrm{dk}_{\mathrm{T}}^{\prime} \phi^{(1)}\left(\mathrm{x}, \mathrm{k}_{\mathrm{T}} ; \mathrm{x}^{\prime}, \mathrm{k}_{\mathrm{T}}^{\prime}\right) \mathrm{H}^{(0)}\left(\mathrm{x}^{\prime}, \mathrm{k}_{\mathrm{T}}^{\prime}, \mathrm{Q}^{2}\right)$
- IR divergences cancel between $\mathrm{G}^{(1)}$ and $\phi^{(1)}$

Gauge invariance

- Partons are off-shell by $\mathrm{k}_{\mathrm{T}}{ }^{2}$. Both quark diagrams (full QCD) and effective diagrams (wave function) depend on gauge.
- Gauge dependences in $\mathrm{G}^{(1)}$ and $\phi^{(1)}$ cancel, and $\mathrm{H}^{(1)}$ is gauge-invariant.
- Hard kernel is infrared-safe, gaugeinvariant, so are predictions from k_{T} factorization.

B decays in QCDF, SCET $_{\mathrm{O}}$, PQCD

See 0705.1624 by Silvestrini

End-point singularity

- End-point singularity in collinear factorization for $\mathrm{B} \rightarrow \pi$ form factor

$$
\begin{aligned}
& \int{ }_{0}^{1} d x \frac{\phi_{\pi}(x)}{x^{2}} \rightarrow \infty, \\
& \phi_{\pi}(x) \propto x(1-x)
\end{aligned}
$$

- But not in k_{T} factorization

Collinear gluons generate k_{T}

$B \rightarrow \pi$ form factor

- In QCDF and SCET (collinear factorization) Form factor $\mathrm{F}^{\mathrm{B} \pi}=\zeta^{\mathrm{B} \pi}$ (with singularity) $+\zeta_{J}^{\mathrm{B} \pi}$ $\zeta^{\mathrm{B} \pi}$ nonfactorizable, $\zeta_{J}{ }^{\mathrm{B} \pi}$ factorizable different orders in $\alpha_{s}: \alpha_{s}{ }^{0}$ and α_{s}
- In PQCD (k_{T} factorization) and SCET ${ }_{\mathrm{O}}$ (Manohar, Stewart 06) Both $\zeta^{B \pi}$ and $\zeta_{J}{ }^{B \pi}$ are factorizable same order in α_{s}
- Regularization of singularity, log of cutoff at every order, $\ln ^{2}\left(\mathrm{~m} / \mathrm{k}_{\mathrm{T}}\right)$ in PQCD and $\operatorname{In} \mu_{ \pm}$ in SCET ${ }_{0}$, need to be resummed.

Annihilation in QCDF, SCET $_{\mathrm{O}}$, PQCD

- Applied to charmless nonleptonic decays, scalar penguin annihilation is treated as:
- Parameter in QCDF due to end-point singularity (nonfactorizable), $X_{A}=\ln \left(m_{B} / \Lambda\right)\left[1+\rho_{A} \exp \left(i \phi_{A}\right)\right]$
- What mechanism generates ϕ_{A} ?
- Factorizable in SCET ${ }_{0}$, but real (ALRS 06). Strong phase appears at $\alpha_{\mathrm{s}}^{2} \Lambda / m_{b}$.
- Phase generated by nonfactorizable contribution at $\alpha_{s} \mathrm{~m}_{0} \Lambda / \mathrm{m}_{\mathrm{b}}{ }^{2}$ (Chay, Li, Mishima in preparation)?

Imaginary in PQCD

Bander-Silverman-Soni Mechanism for strong phase

Loop line can go on-shell

Strong phase

$$
\frac{1}{x m_{B}^{2}-k_{T}^{2}+i \epsilon}=\frac{P}{x m_{B}^{2}-k_{T}^{2}}-i \pi \delta\left(x m_{B}^{2}-k_{T}^{2}\right) .
$$

Imaginary annihilation! (Li, Mishima 06)

- Whether scalar penguin annihilation carries strong phase can be tested by comparing
- Transition

$$
\begin{array}{cl}
\mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{+} \pi^{0}\right) & \mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{+} \rho^{0}\right) \\
\mathrm{B} \rightarrow \mathrm{P} & \mathrm{~B} \rightarrow \mathrm{~V}
\end{array}
$$

- Emission penguin $a_{4}+a_{6}$

$$
a_{4}-a_{6}
$$

- Annihilation is less, more important
- Real annihilation, $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{+} \pi^{0}\right) \approx \mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{+} \rho^{0}\right)$
- Imaginary annihilation, small large phase

$$
\mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{+} \pi^{0}\right) \ll \mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{+} \rho^{0}\right)
$$

- Data (HFAG) 0.047 ± 0.026
$0.31^{+0.11}{ }_{-0.10}$

Recent results

Δ S puzzle, Zupan's talk

$\mathrm{B}\left(\pi^{0} \pi^{0}\right)$ puzzle?

- Large $B\left(\pi^{0} \pi^{0}\right) \approx 10^{-6}$ not understood.
- Complete $\mathrm{O}\left(\alpha_{s}{ }^{2}\right) \mathrm{T}^{\prime \prime}$ (spectator scattering) in QCDF/SCET enhances C (Beneke, Yang 05; Beneke, Jager 05; 06).
- $\operatorname{BR}\left(\pi^{0} \pi^{0}\right)$ can not be enhanced too much due to bound from data $\operatorname{BR}\left(\rho^{0} \rho^{0}\right) \approx 1.07 \times$ 10^{-6} (Li, Mishima 06).
- PQCD matches data $B\left(\rho^{0} \rho^{0}\right)$, but gives $B\left(\pi^{0} \pi^{0}\right)=\left(0.3^{+0.5}{ }_{-0.2}\right) \times 10^{-6}$

$\mathrm{f}_{\mathrm{L}}\left(\phi \mathrm{K}^{*}\right)$ puzzle? (Gritsan's talk)

- No "satisfactory" SM explanation, but...
- With annihilation (chirally enhanced, Chen, Keum, Li 02; Kagan 04) and small form factor $\mathrm{A}_{0}{ }^{\mathrm{BK*}}$ (Li 04), it is possible to accommodate data.
- $\mathrm{f}_{\mathrm{L}}\left(\mathrm{K}^{\star+} \rho^{0}\right) \not \mathrm{f}_{\mathrm{L}}\left(\mathrm{K}^{\star 0} \rho^{+}\right)$dramatically may be a puzzle (tree not dominant) (Lu et al 06).

Mode	PDG2004 Avg.	BABAR	Belle
$K^{*+} \rho^{0}$	$0.96_{-0.15}^{+0.04} \pm 0.04$	$0.96_{-0.15}^{+0.04} \pm 0.05$	
$K^{* 0} \rho^{+}$	$0.43 \pm 0.11_{-0.02}^{+0.05}$	$0.52 \pm 0.10 \pm 0.04$	$0.43 \pm 0.11_{-0.02}^{+0.05}$
ϕK^{*+}	0.50 ± 0.07	$0.46 \pm 0.12 \pm 0.03$	$0.52 \pm 0.08 \pm 0.03$
$\rho^{+} \rho^{0}$	0.96 ± 0.06	$0.905 \pm 0.042_{-0.027}^{+0.023}$	$0.95 \pm 0.11 \pm 0.02$
$\omega \rho^{+}$	$0.88_{-0.15}^{+0.12} \pm 0.03$	$0.82 \pm 0.11 \pm 0.02$	

$\mathrm{A}_{\mathrm{CP}}(\mathrm{K} \pi)$ puzzle? (Gronau's talk)

- Vertex correction in NLO PQCD gives large imaginary C , rotating T in $\mathrm{K}^{+} \pi^{0}$, $\mathrm{C} / \mathrm{T} \approx 0.3 \exp \left(-80^{\circ}\right)(\mathrm{Li}$, Mishima, Sanda 05)
- Alleviated, but not gone away completely

Hadronic B_{s} decays

- Test SU(3) or U-spin symmetry
- Framework basically the same as of $B_{u, d}$ decays: QCDF (Beneke, Neubert 03), SCET (Williamson, Zupan 06), PQCD (Ali et al 07; Xiao et al)
- $B R^{P Q C D}$ similar to $B R^{Q C D F}, A_{C P}{ }^{P Q C D}$ opposite to $\mathrm{A}_{\mathrm{CP}}{ }^{\mathrm{OCDF}}$ in sign
- PQCD predictions consistent with existing data, except:
- $B\left(B_{s} \rightarrow K^{+} \pi\right)$ twice of data, like $B\left(B_{d} \rightarrow \pi^{+} \pi\right)$
- $\mathrm{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \phi \phi\right) \approx 44 \times 10^{-6}$ too large.

Comments

- Factorization approaches are systematic tools, better not to be used for data fitting (S1,... S4, G in QCDF, charming penguin in SCET, BPRS 04)
- End-point singularities in emission and annihilation were not treated in a consistent way in QCDF.
- $\mathrm{SCET}_{\mathrm{O}}$ is encouraging, counting rules consistent with PQCD. But need to deal with arbitrary In $\mu_{ \pm}$. ($\mathrm{In}^{2} \mathrm{k}_{\mathrm{T}}$ resummed in PQCD).
- NLO, $1 / m_{B}$ corrections not yet fully studied, crucial for identifying puzzles as new physics signals.

Back-up slides

k_{T} expansion

- Parton momentum $k=\left(\mathrm{k}_{+}, 0, \mathrm{k}_{\mathrm{T}}\right)$
- Large $x \sim O(1), k_{T}$ negligible

$$
\frac{P-k}{(P-k)^{2}} \not \approx \frac{P-k^{+}}{\left(P-k^{+}\right)^{2}}+\frac{P-k^{+}}{\left(P-k^{+}\right)^{2}} k_{T} \frac{P-k^{+}}{\left(P-k^{+}\right)^{2}}
$$

- Small $x, x Q^{2} \approx K_{T}{ }^{2}$, different K_{T} expansion

$$
\frac{P-k}{(P-k)^{2}} \approx \frac{P-k^{+}}{\left(P-k^{+}\right)^{2}-k_{T}^{2}}+\frac{P-k^{+}}{\left(P-k^{+}\right)^{2}-k_{T}^{2}} k_{T} \frac{P-k^{+}}{\left(P-k^{+}\right)^{2}-k_{T}^{2}}
$$

- Setting k_{T} to zero in cases with end-point singularity will be a too strong approximation.

