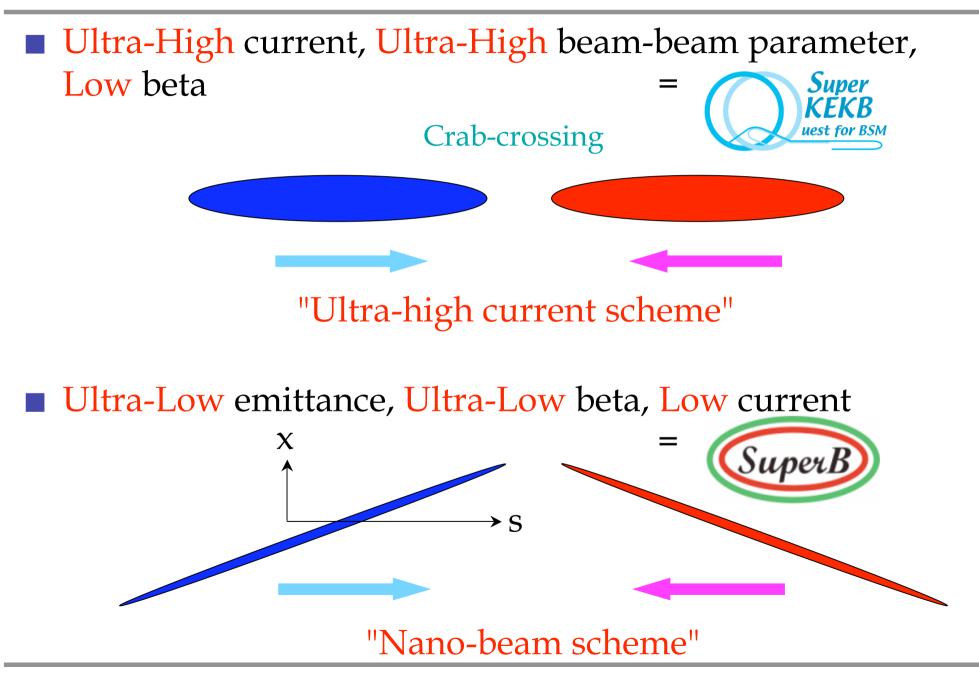


Super B Factories


Y. Ohnishi/KEK FPCP2007

Bled, Slovenia 16/May/2007

Outline

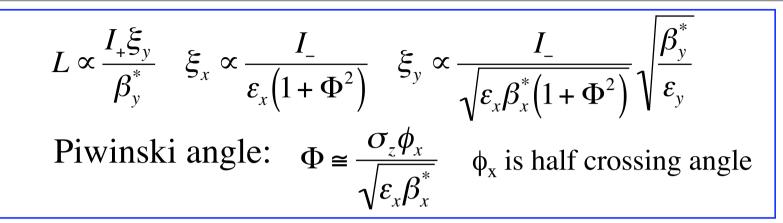
- Two possible approaches to achieve L~10³⁶.
 - SuperKEKB (upgraded machine of KEKB)
 - SuperB(synergy with ILC)
- SuperKEKB
 - proposed at KEK
- SuperB
 - proposed at LNF/INFN, SLAC, etc.
- Summary

Two Approaches to achieve L~10³⁶

Luminosity

• Luminosity can be expressed by the formula:

$$L = \frac{N_+ N_- f}{4\pi \sigma_x^* \sigma_y^*}$$


* means value at IP

• However, we do not use above formula for the machine design. Instead an alternative formula is used.

$$L = \frac{\gamma_{e\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{e\pm} \xi_{ye\pm}}{\beta_y^*} \right) \left(\frac{R_L}{R_{\xi_y}} \right)$$
$$\propto \frac{I_{e\pm} \xi_{ye\pm}}{\beta_y^*} \qquad \text{(flat-beam case)}$$

• This describes L in terms of the lattice parameter β_y^* , beambeam parameter ξ_y , eliminating the explicit dependence on beam size.

Luminosity (cont'd)



$$L \propto \frac{I_{+}I_{-}}{\sqrt{\varepsilon_{x}\beta_{x}^{*}\varepsilon_{y}\beta_{y}^{*}}}$$
$$\xi_{x} \propto \frac{I_{-}}{\varepsilon_{x}}$$
$$\xi_{y} \propto \frac{I_{-}}{\sqrt{\varepsilon_{x}\beta_{x}^{*}}} \sqrt{\frac{\beta_{y}^{*}}{\varepsilon_{y}}}$$

- (1) $\Phi < 1$ (SuperKEKB) If $\varepsilon_v \beta_v^* \rightarrow 0$ while keeping ξ_x and ξ_y constant, $L \rightarrow \infty$.
 - But $\beta_v^* \ge \sigma_z \ne 0$ (hourglass effect) and β_v^*/ϵ_v is constant, then L cannot go to ∞ .
 - New technique is necessary.
 - If $v_x \rightarrow +0.5$, then $\xi_v \rightarrow \infty$ and $L \rightarrow \infty$ with increasing I.

"Ultra-high current scheme"

Luminosity (cont'd)

(2) $\Phi >> 1$ (SuperB)

$$L \propto \frac{I_{+}I_{-}}{\sigma_{z}\phi_{x}\sqrt{\varepsilon_{y}\beta_{y}^{*}}}$$

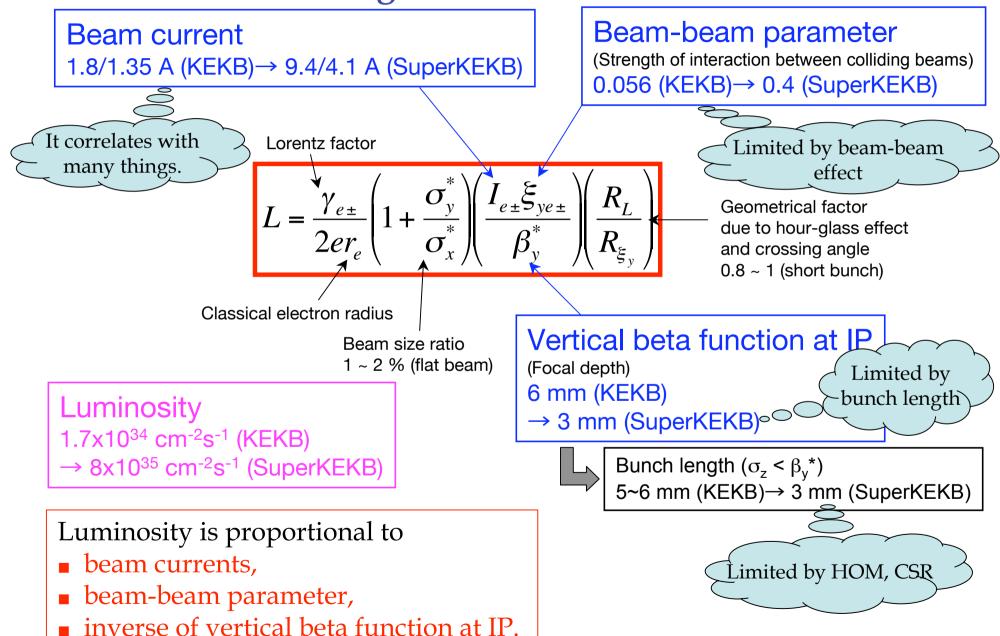
$$\xi_{x} \propto \frac{I_{-}\beta_{x}^{*}}{\left(\sigma_{z}\phi_{x}\right)^{2}}$$
$$\xi_{y} \propto \frac{I_{-}}{\sigma_{z}\phi_{x}}\sqrt{\frac{\beta_{y}^{*}}{\varepsilon_{y}}}$$

- If $\varepsilon_y \beta_y^* \rightarrow 0$ while keeping ξ_x and ξ_y constant, $L \rightarrow \infty$.
- β_{v}^{*} is not limited by $\sigma_{z} \neq 0$.

$$\beta_{y}^{*} \geq \frac{\sqrt{\varepsilon_{x}\beta_{x}^{*}}}{2\phi_{x}}$$

• If $\varepsilon_{y}\beta_{y}^{*} \rightarrow 0$ while β_{x}^{*} , $\beta_{y}^{*}/\varepsilon_{y}$, $\sqrt{\varepsilon_{x}}/\beta_{y}^{*}$ remain constant, then L can go to ∞ .

"Nano-beam scheme"

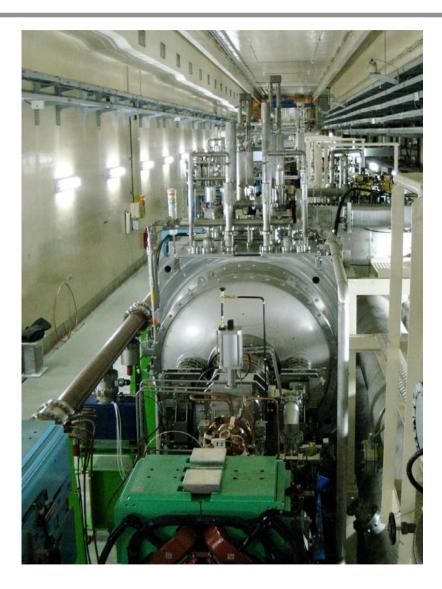


KEK, Tsukuba, Japan

Strategy of SperKEKB

- Target luminosity is $8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$.
- We will use components of KEKB as much as possible
 - magnets, klystrons, tunnel, existing facilities, ...
- Continuous injection and a powerful injection system is necessary.
 - We have considerable experience with the continuous injection, which has been operated successfully at KEKB.
- Ultra-High beam current is a standard concept.
 - RF system for SuperKEKB; ARES and SCC modified to store 9.1 A(LER) and 4.1 A(HER).
 - Electron cloud is the most important issue in the positron ring.
 - Fast ion and CSR, and other collective effects should be evaluated.
 - Ante-chamber, vacuum bellows for chamber connection, HOM absorbers are considered.
- Low beta function at IP to improve luminosity
 - Interaction region(IR) should be designed to satisfy requirements of low beta at IP, physical and dynamic aperture, SR, detector backgrounds, etc.
- Finite crossing and crab crossing scheme is feasible for Ultra-high beambeam parameter.

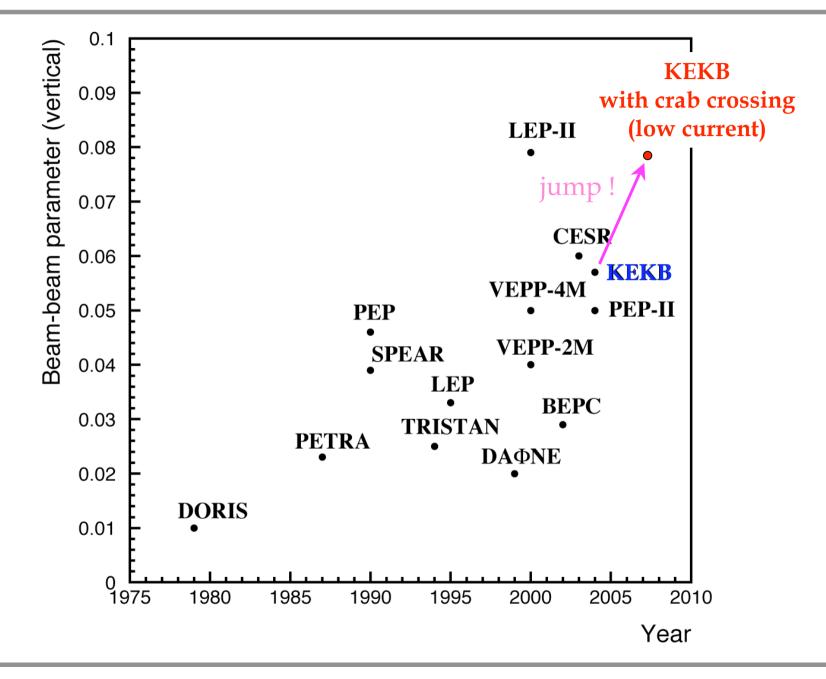
Luminosity Improvement - High Current Scheme -



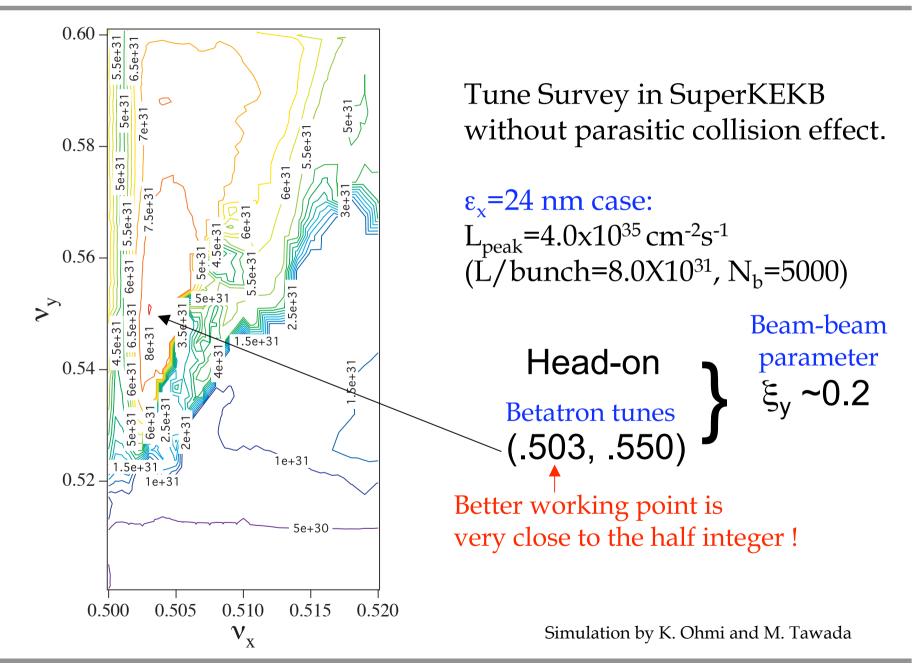

SuperKEKB Machine Parameters

SuperKEKB						
Emittanco	ε _x	9*	nm			
Emittance	ε _y	0.045	nm			
Beta at IP	β_x^*	200	mm			
Deta at IF	β_y^*	3	mm			
Beam size at IP	σ_x^*	42	μm			
	σ_y^*	367	nm			
Bunch length	σ _z	3	mm			
Synchrotron tune	$\nu_{ m s}$	0.025				
Beam current	I ₊ /I_	9.4/4.1	А			
#bunches	N _b	5000				
Crossing angle	2φ _x	$30 \rightarrow 0$ (crab crossing)	mrad			
Page har	ξ _x	0.209				
Beam-beam	ξ _y	0.405				
Luminosity	L	8x10 ³⁵	cm ⁻² s ⁻¹			

* 24 nm emittance is one of the options because low emittance might be difficult because of beam dynamics issues. Magnet configuration is same due to lattice flexibility. In that case, luminosity goes down to $4x10^{35}$ cm⁻²s⁻¹.


Crab Cavities

History of Beam-beam Parameters


Crab Cavity at KEKB

• Crab crossing was done first at KEKB. Effective headon collision was basically achieved.

• The highest vertical beam-beam parameter is about ~0.08 so far, which is a little higher than the geometrical gain due to head-on. Expected value is ~0.1.

• Crab cavity operation is still in the tuning phase. High gain in the luminosity needs more time for tuning and development of the method.

Tune Scan with Beam-beam Simulation

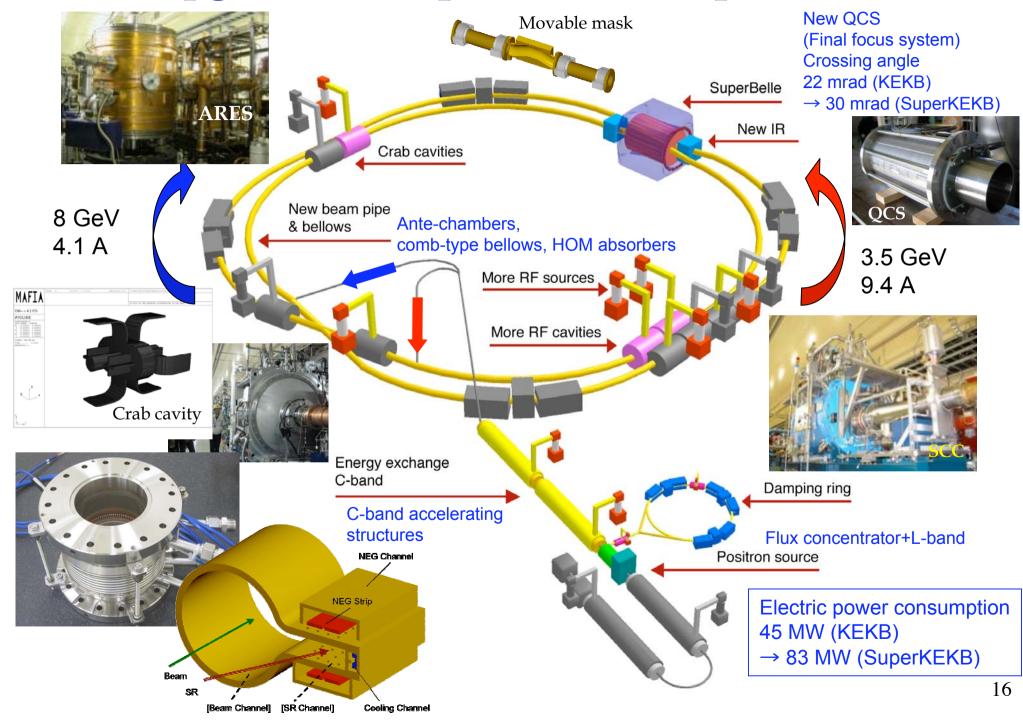
Horizontal Tune close to Half Integer v_x =0.5

• In the collision of two beams, particles interact with fixed beam at either x or -x for $v_x=0.5$.

$$\chi \qquad x(n) = \sqrt{2J_x\beta_x}\cos(2\pi\nu_x n + \psi_{x0})$$

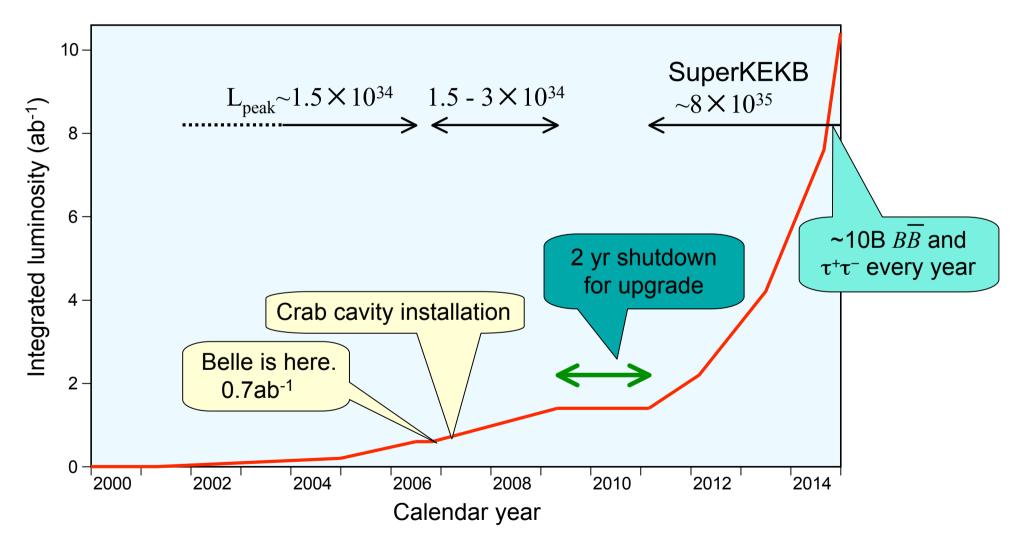
→x

n: turn number (integer)


- In the case of crab crossing, the phase space structure in y-p_y at x is the same as that at -x because of symmetry of the fixed beam.
- System becomes one dimensional and avoids bad resonances, the beam-beam parameter can be increased.

$$3 \text{ DOF} \xrightarrow{\uparrow} 2+1 \text{ DOF} \xrightarrow{\uparrow} 1+1+1 \text{ DOF}$$

$$Crab-crossing (resolve xz coupling) (resolve xy coupling) (resolve xy coupling)$$


• This technique realizes high luminosity at KEKB/SuperKEKB. To make this possible, machine errors must be reduced significantly.

Upgraded Components for SuperKEKB

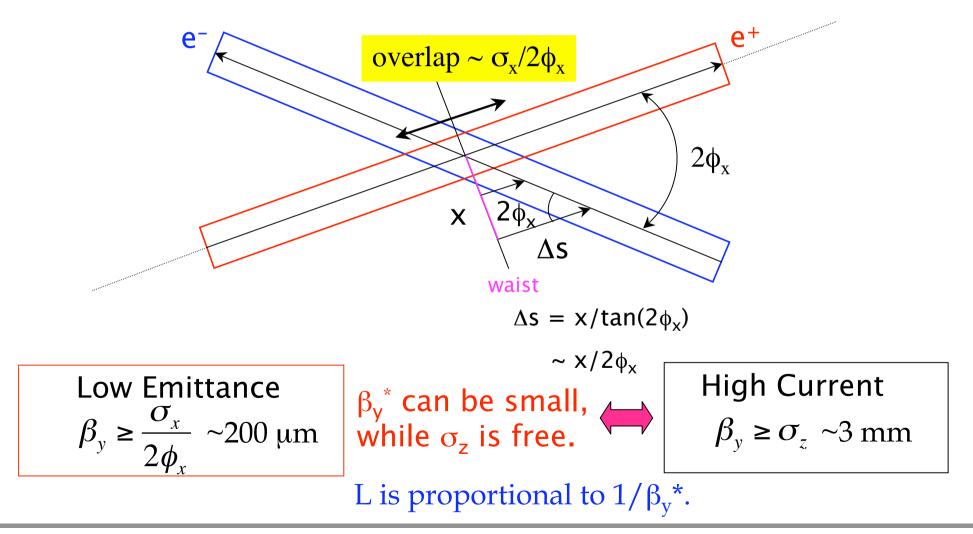
Proposed Schedule for SuperKEKB

Total cost ~290M€(~398 M\$)

Possible site in the Tor Vergata University close to the Frascati Lab

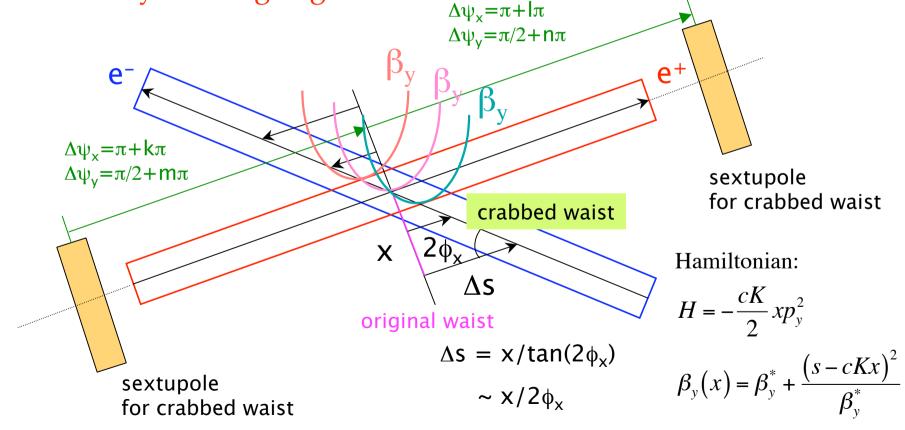
Concept of SuperB

- Objection for standard scheme of SuperKEKB:
 - Ultra-high beam current, short bunch, ...


This means:

- Huge amount of AC plug power is needed.
- It is difficult to manage SR, HOM and CSR issues.
- Completely different collider scheme is necessary to overcome this situation.
- SuperB chooses an alternative scheme:
 - Ultra-low emittance, Ultra-low beta, large crossing angle
 - Crab waist might be necessary to suppress bad resonances.
 This means:
 - Low current, long bunch while keeping high luminosity
 - less AC plug power
 - It is difficult to manage dynamic aperture(injection rate and Tousheck lifetime) and stabilize beams.

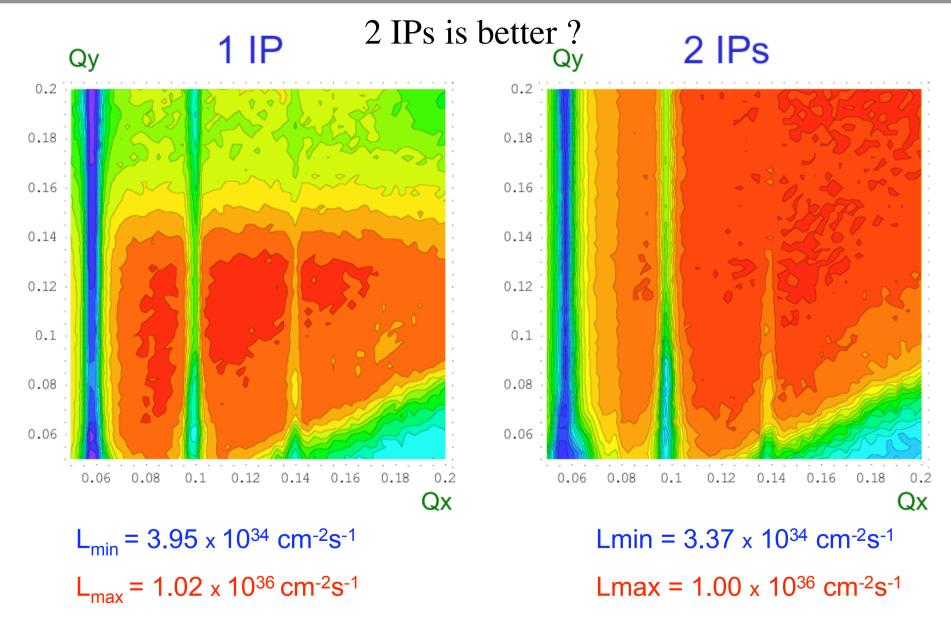
Nano-beam Scheme


"Ultra-low Emittance and Ultra-low Beta Scheme" proposed by SuperB

- Small σ_x and large ϕ_x make small overlap region.
- Overlap area(longitudinal) of colliding bunches is $\sigma_x/2\phi_x$.

Crab Waist Scheme

- Waist position is adjusted by kick from sextupoles to suppress hourglass effect.
 Δs~x/2φ_x
- Particles collide another beam at their waist point.
- Crab waist removes beam-beam and betatron coupling terms induced by crossing angle



Machine Parameters of SuperB

SuperB CDR

Denemotor	Nominal		Upgrade		Ultimate		ILait	
Parameter	LER	HER	LER	HER	LER	HER	Unit	
Energy	4	7	4	7	4	7	GeV	
Luminosity	$1x10^{36}$		2.4×10^{36}		3.4×10^{36}		cm ⁻² s ⁻¹	
Beam current	2.28	1.3	3.95	2.17	4.55	2.6	А	
Number of bunches	1733 3466							
Emittance $\varepsilon_x/\varepsilon_y$	1.6/0.004 Low beam currents 0.8/0.002					nm		
Beta β_x^* / β_y^*	20/0.3 are attractive! 20/0.2					mm		
Beam size σ_x^*/σ_y^*	5.7/0.035 4/0.020			μm				
Bunch length σ_z	6					mm		
Full crossing angle $2\phi_x$	34 Electron pol. ~80%					mrad		
Momentum spread σ_{δ}	8.4x10 ⁻⁴	9x10-4	1x10 ⁻³					
Momentum compaction α_p	1.8x10 ⁻⁴	3x10-4	1.8x10 ⁻⁴	3x10-4	1.8x10 ⁻⁴	3x10-4		
Total V _c	6	18	6	18	7.5	18	MV	
Energy loss U ₀	1.9	3.3	2.3	4.1	2.3	4.1	MeV	
Damping time τ_x/τ_s	32,	/16	25/12.5				msec	

Luminosity Tune Scan (1 IP VS 2 IPs)

M.Zobov, D.Shatilov

Summaries of Super B Factories

Comparison between SuperB and SuperKEKB

					
		SuperB (Nominal)	SuperKEKB		
Emittance	ε _x	1.6	9	nm	One order magnitude smaller than SuperKEKB
Horizontal beta	β_x^*	20	200	mm	
Vertical beta	β_y^*	0.3	3	mm	ALM AND
Horizontal beam size	σ_x^{*}	5.7	42	μm	
Vertical beam size	σ_y^{*}	35	367	nm	
Bunch length	σ_{z}	6	3	mm	
Half crossing angle	φ _x	17	15	mrad	
Piwinski angle	φ	18	1	rad	2 2
Current(LER/HER)	I _b	2.28/1.30	9.4/4.1	Α	
Luminosity (x10 ³⁵)	L	10	8	cm ⁻² s ⁻¹	100
AC Plug Power	Р	34	83	MW	

AC power for KEKB is already 40 MW. Max site power is 100 MW at KEK.

Emittance is Entropy !

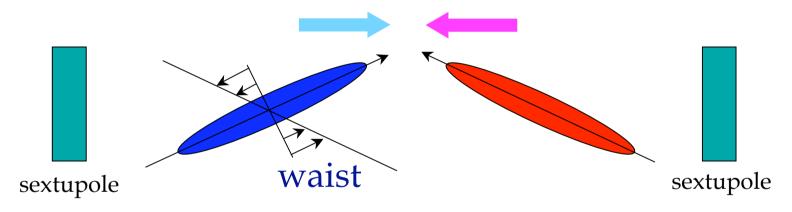
• Entropy can be written by:

Emittance

 $S = \ln \frac{\Delta p \Delta q}{\left(2\pi\hbar\right)^s}$

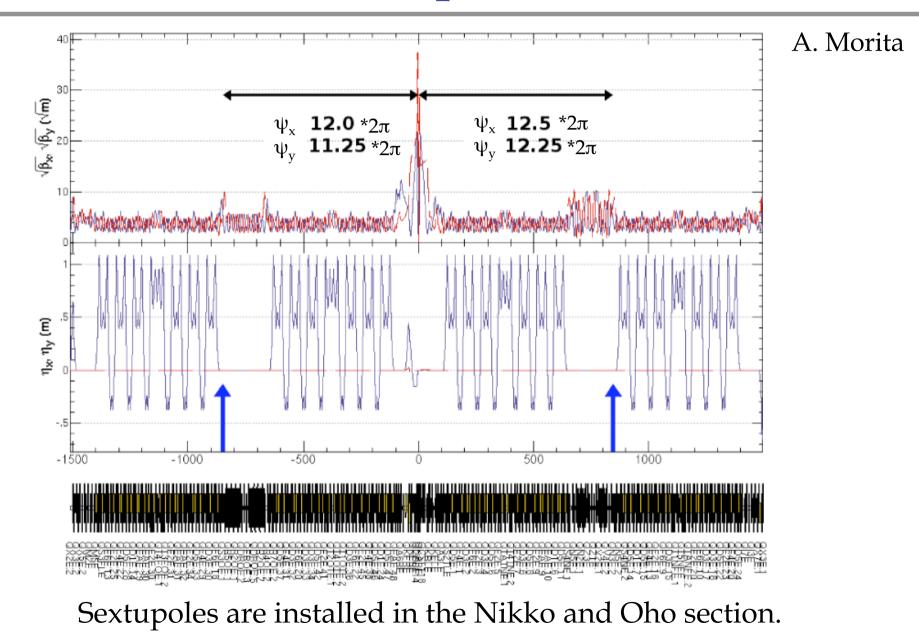
Text book(L.D. Landau, E.M. Lifshitz)

Entropy can not be negative. $\Delta p \Delta q \ge h$

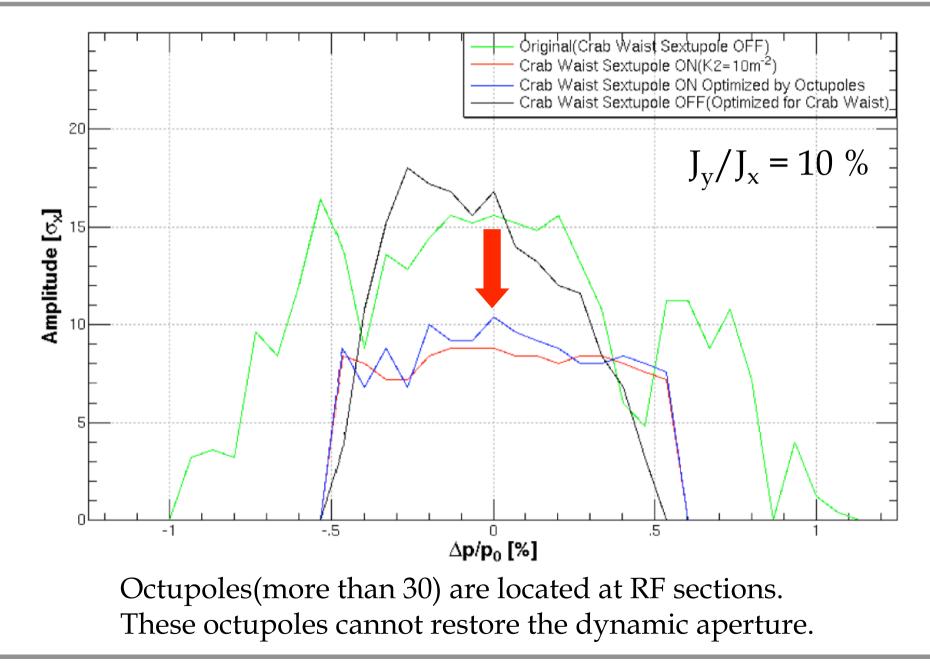

- Emittance can be easily increased.
 - machine errors (magnet alignment, field strength, etc)
 - emittance growth due to nonlinear effects.
 - beam-beam interaction
 - strong sextupoles at high beta function(chaotic effects), etc
 - Ultra-low emittance is not trivial same as ultra-high current.
 - A circular collider is completely different from a damping ring such as ATF or ILC damping ring (no final focus, no colliding beams, no trickle charge or continuous injection).
 - How to manage ultra-low emittance?

Summary of SuperKEKB

- A technically feasible design of SuperKEKB has been made with 8x10³⁵ cm⁻²s⁻¹ luminosity.
- SuperKEKB R&D is in engineering phase not in conceptual phase for the ultra-high current scheme.
 - Realistic lattice design, dynamic aperture is OK.
 - Crab cavity, ante-chamber, new bellows, C-band structures, upgraded ARES, development of powerful BxB feedback system, new QCS, ...
 - These items have already been or will be tested at KEKB.
 - See "Letter of Intent for KEK Super B Factory", June 2004. (However, number should be updated.)
- Issues to be difficult
 - In case of v_x =+0.5, physical aperture around IP, SR fan from QCS might be serious.
 - Many things related to high currents
 - To cure CSR, vacuum chamber design might be reconsidered.
 - We need more accurate evaluation for HOM heating and cooling method.


Crab Waist Optics at KEKB

* Beam-beam simulation by K. Ohmi has shown that the crab waist scheme will boost the luminosity of the present KEKB, as well as the crab cavity.

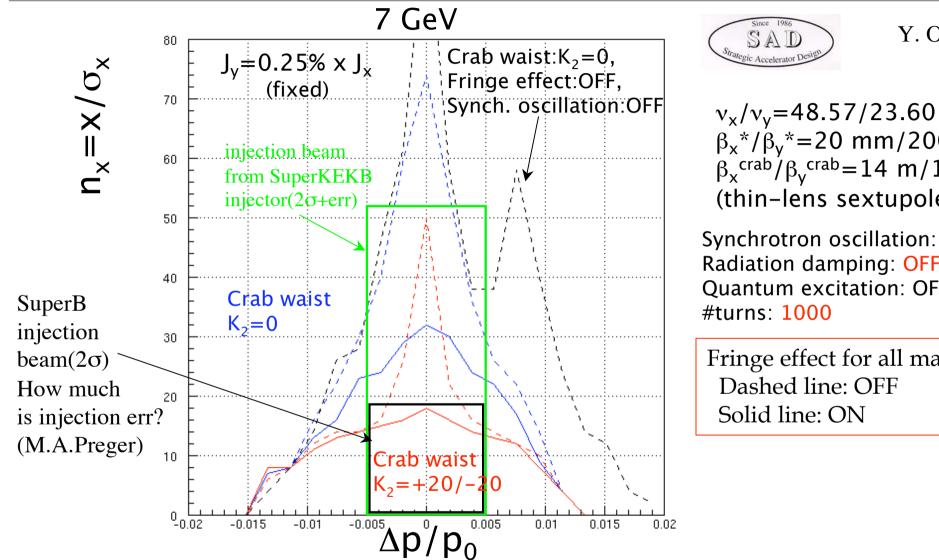

- Several lattice design was tried on the computer.
- * As the result, drastic degradation of the dynamic aperture was found. No good solution has been obtained so far.

KEKB-HER Model Optics for Crab Waist

29

Dynamic Aperture of KEKB-HER

Summary of SuperKEKB (cont'd)


- Since KEKB is a very flexible accelerator, we also plan to evaluate another option using a "nano-beam scheme" with a "crab-waist".
- As a matter of principle, we will consider all possible machine designs to reach high luminosity. The high current scheme is the standard strategy unless and until we find a better scheme that is technically feasible.

Summary of SuperB

- Target luminosity is $>10^{36}$ cm⁻²s⁻¹.
- "Conceptual Design Report", based on the reuse of all the PEP hardware, that might fit in one of the existing facilities, or in a new(and available) site near Frascati.
- Very long to do list to for the ring design optimization:
 - Include the injection section, the tunes trombone and the chicane in the ring
 - Optimize the ARC cell
 - Optimize the wigglers
 - Improve the Dynamic Aperture (Mostly FF and Crab Waist Optics optimization)
 - Design for the Injection System
 - Make realistic lattice design includes fringe effects, multipole elements, skew quads, offset of FF quads, matching section, etc.

from P. Raimondi at SuperB V Workshop

Dynamic Aperture for SuperB-HER

Y. Ohnishi

 $\beta_{x}^{*}/\beta_{y}^{*}=20 \text{ mm}/200 \mu \text{m}$ $\beta_{x}^{crab}/\beta_{y}^{crab}=14 \text{ m}/140 \text{ m}$ (thin-lens sextupole) Synchrotron oscillation: ON

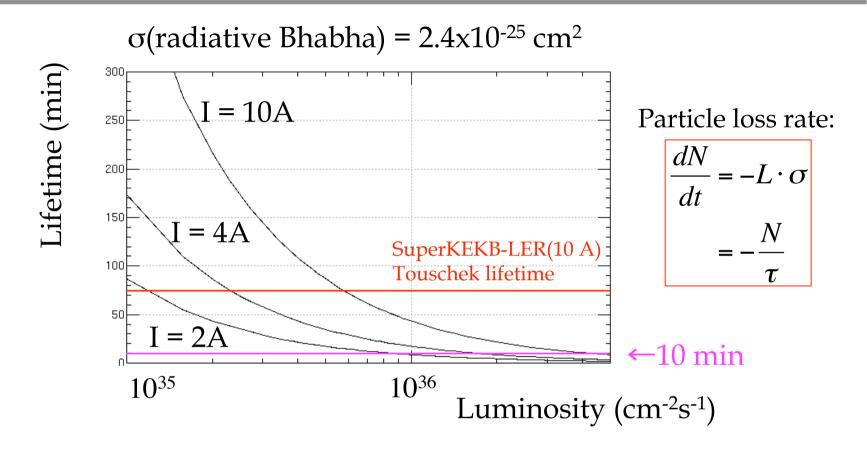
Radiation damping: OFF Quantum excitation: OFF

Fringe effect for all magnets Dashed line: OFF

Nonlinear Maxwellian Fringe field reduces dynamic aperture. Octupole optimization might be able to improve dynamic aperture.

Summary of SuperB (cont'd) from P. Raimondi at SuperB IV Workshop

- SuperB studies are already providing useful input to the accelerators and particle physics community.
- The INFN will push any solution, but particularly SuperB if DAFNE upgrade(SuperB based) proves successful. A decision to ask for funding to the Italian government might happen as early as next year(About 200MEuros, mostly for the injector and the conventional facilities).
- We hope to gather in the enterprise as many labs and institutions as possible.


We should choose the best way to realize a Super B Factory in the world.

Need a lot of scientific arguments among many physicists...

R&D experiments at existing accelerators (crab cavity at KEKB and crab waist at DAFNE)

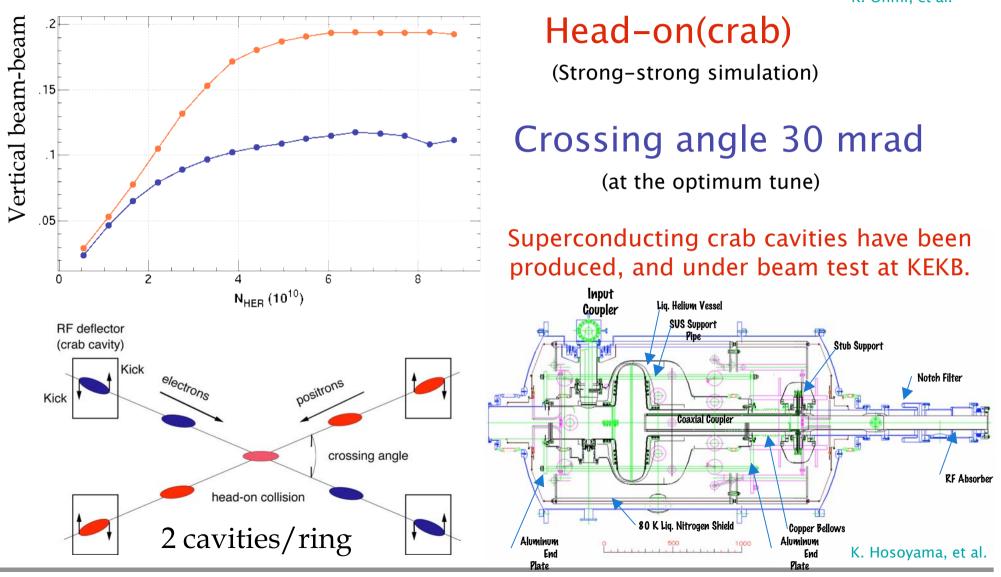
Backup Slides

Luminosity Lifetime

- ✓ Luminosity lifetime in SuperKEKB-HER is about 45 min and 100 min in SuperKEKB-LER for L=4x10³⁵.
- ✓ For L=10³⁶, lifetime becomes 17 min in SuperKEKB-HER and 40 min in SuperKEKB-LER, which is much shorter than Touschek lifetime.

Crab Crossing and Crab Waist

- Head-on collision is effectively realized by crab cavity, while crab waist controls nonlinear interaction induced by crossing angle.
- For high current scheme, either scheme will work, but not both at once.
- For low emittance scheme, only crab waist is applicable because beam-beam tune shift becomes too high.
- Crab waist can make luminosity comparable to that of crab crossing.


SuperKEKB

SuperKEKB Machine Parameters

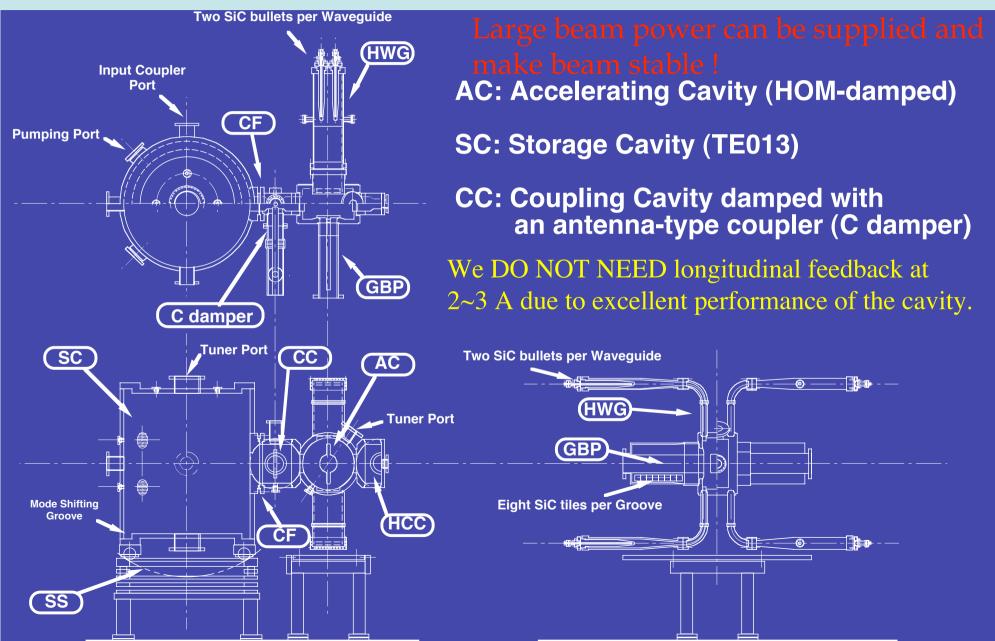
SuperKEKB										
Option		High Emittance	Low Emittance	Crab Waist						
Emittance	ε _x	24	9	6	nm					
Emittance	ε _y	0.18	0.045	0.06	nm					
	β_x^*	20	50	mm						
Beta at IP	β_y^*	3	0.5	mm						
Beam size at IP	σ_x^*	69	42	17.3	μm					
Deam Size at IF	σ_y^*	735	367	173	nm					
Bunch length	σ_{z}	3	3	6	mm					
Synchrotron tune	ν_{s}	0.03	0.025	0.01						
#particles/bunch	n ₊ /n_			1010						
#bunches	N _b									
Crossing angle	2φ _x	$30 \rightarrow 0$ (cra	30	mrad						
Deere lasses	ξ _x	0.135	0.209	0.017						
Beam-beam	ξy	0.215	0.405	0.133						
Luminosity	L	$4x10^{35}$	8x10 ³⁵	9x10 ³⁵	cm ⁻² s ⁻¹					

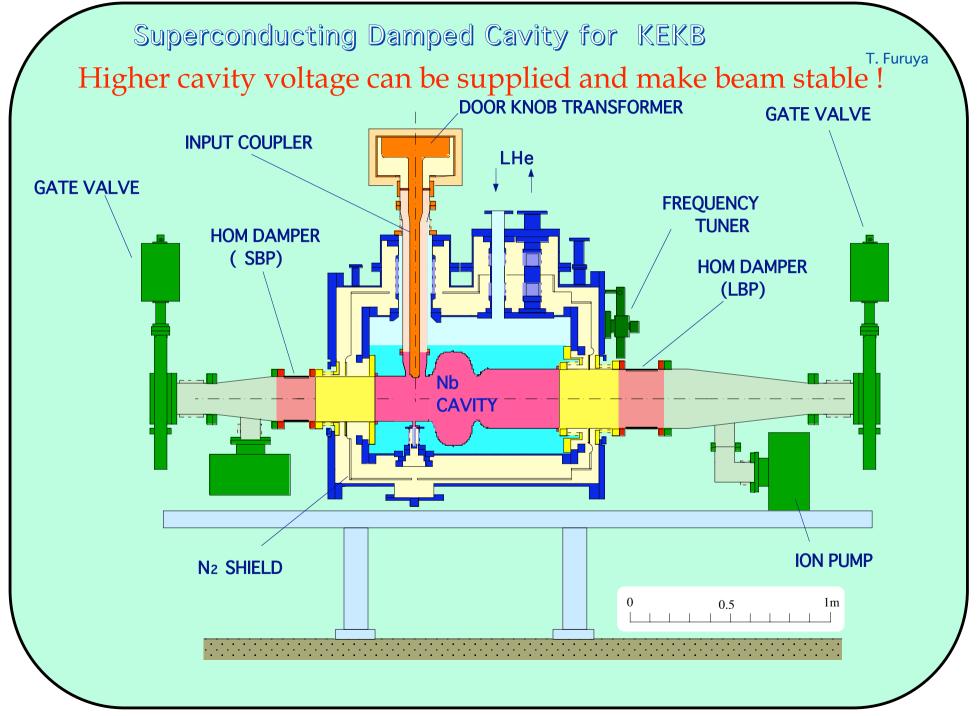
Crab-crossing

Crab crossing will increase the beam-beam parameter by a factor of 2.

Toward Ultra-high Beam Current

- RF system
 - ARES cavity is a state of the art normal-conducting cavity developed at KEK. Long. FB is not necessary up to ~3 A.
 - SCC cavity is the first superconducting cavity in the world that has stored a beam current greater than 1 A .
 - RF system will be upgraded and doubled for ultra-high currents.
- Vacuum system
 - We adopt an ante-chamber design to absorb strong SR power and also to suppress photoelectron cloud effects.

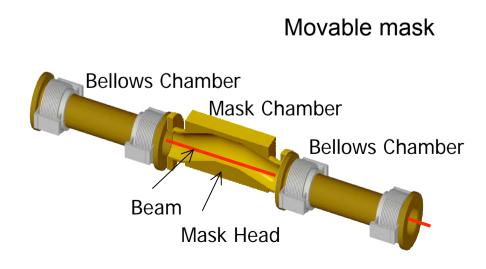


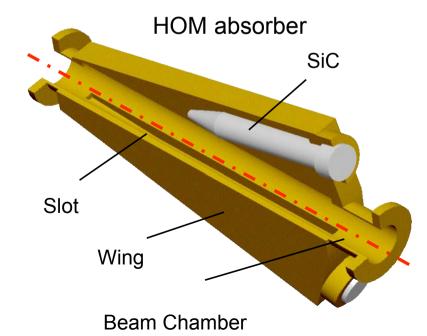

Accelerator Resonantly coupled with Energy Storage

KAGEYAMA, T. SuperKEKB WS Nov. 28, 2003

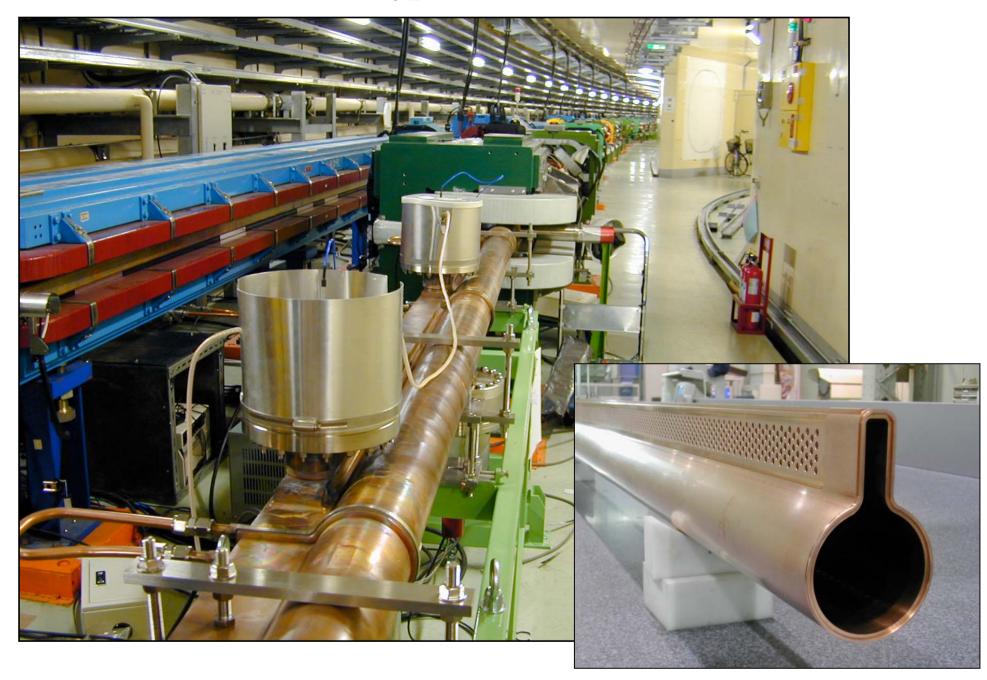
ARES

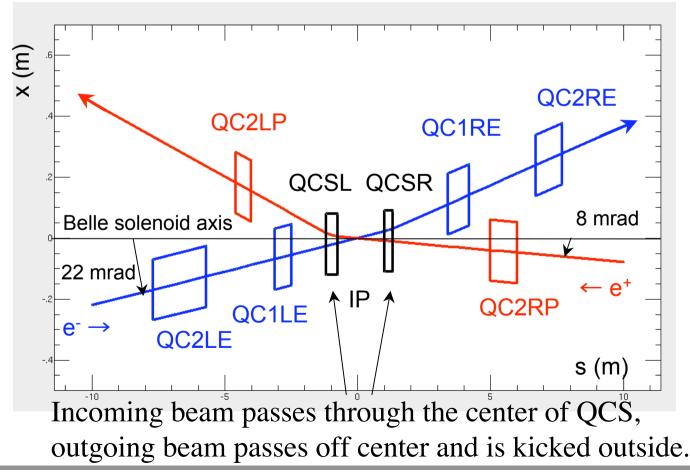

3-cavity system stabilized with the $\pi/2$ -mode operation



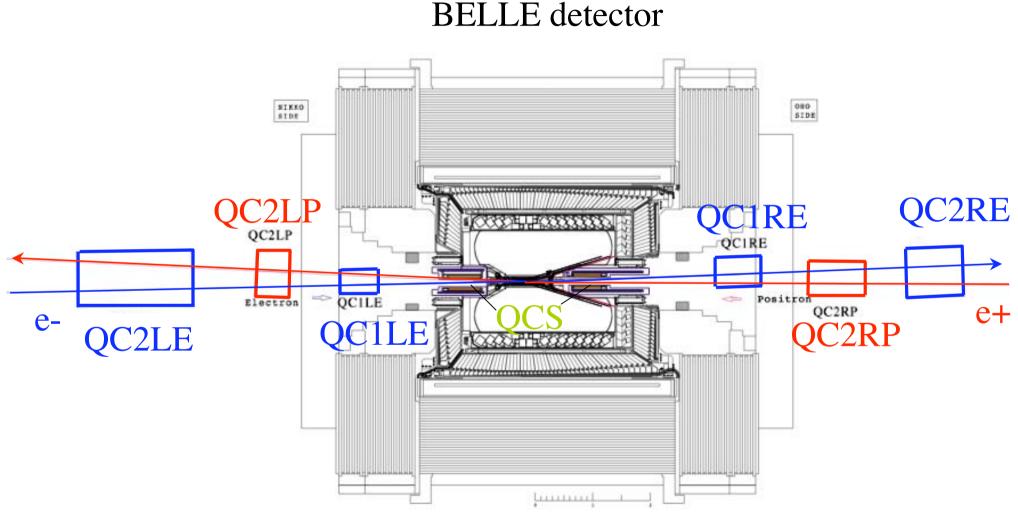


Ante-chamber NEG Channel NEG Strip ビーム (Beam Channel] [SR Channel] Cooling Channel


Comb-type bellows

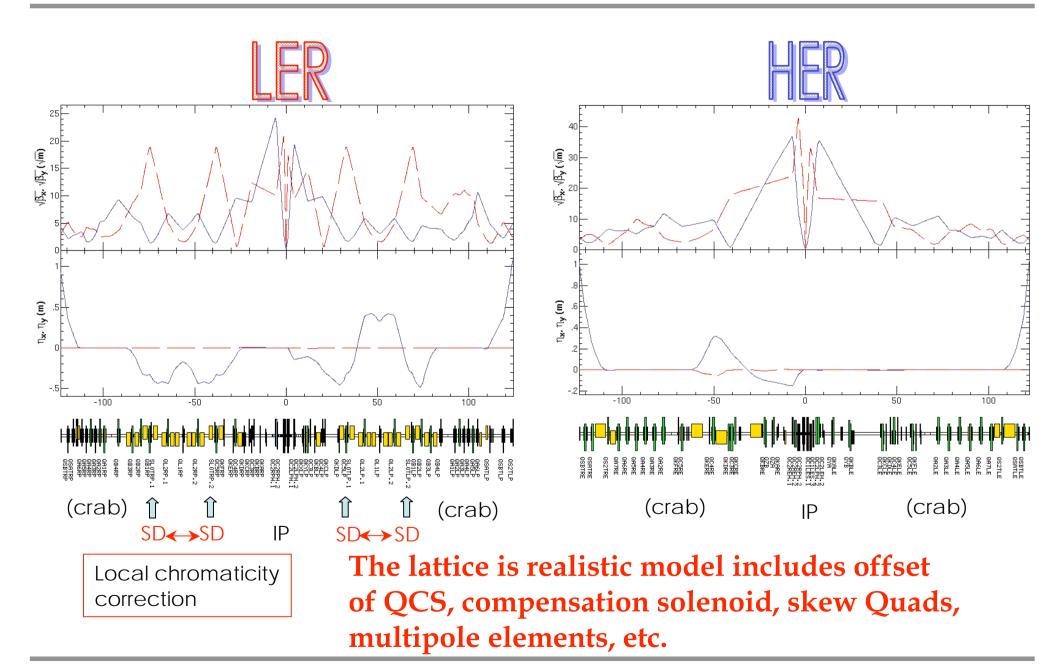


Test of Prototype Ante-chamber at KEKB(LER)

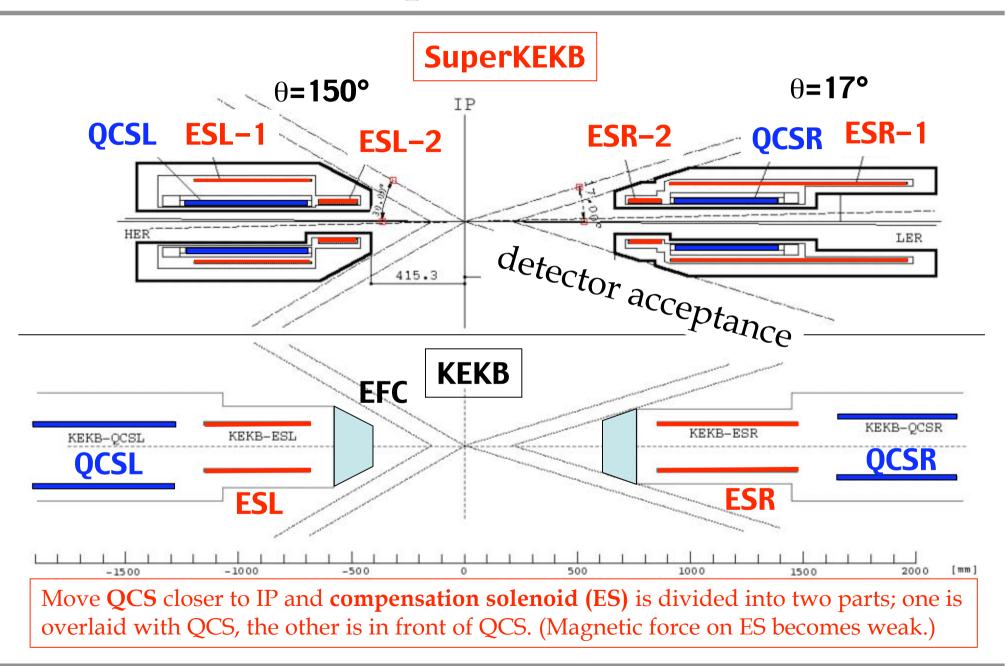


Squeezing Beta Function at IP

- Beta function at IP is 20 cm in the horizontal and 3 mm in the vertical.
- New QCS magnets are placed closer to IP
 - Special magnets vicinity of IP are also moved closer to IP than KEKB.
 - 30 mrad finite-crossing (22 mrad at KEKB)

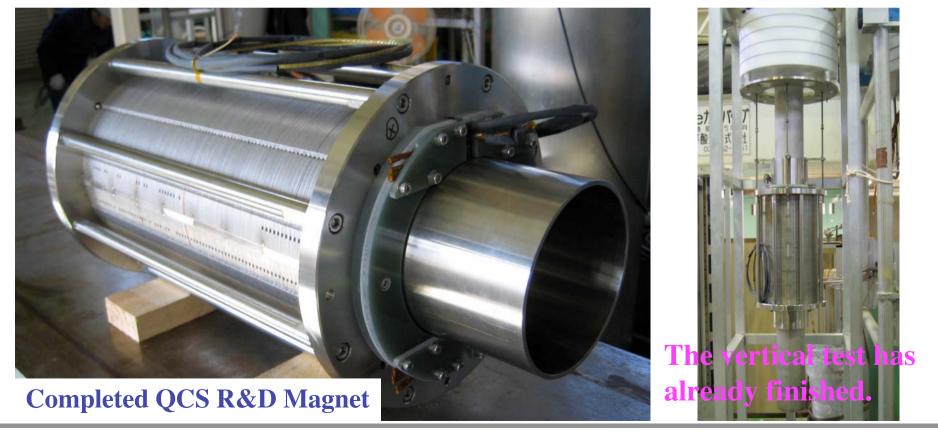


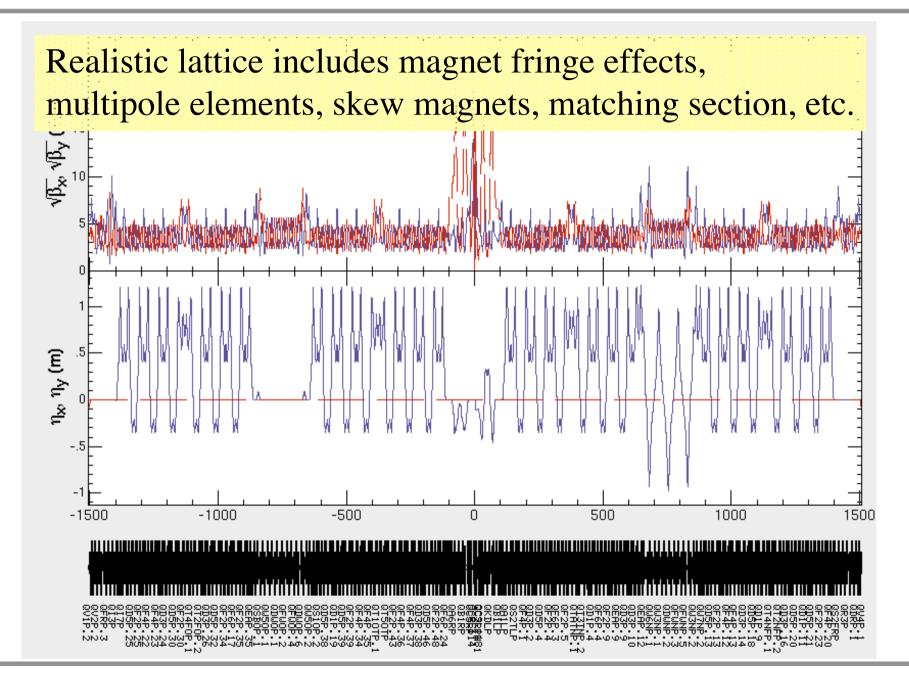
Realistic Drawing of IR magnets



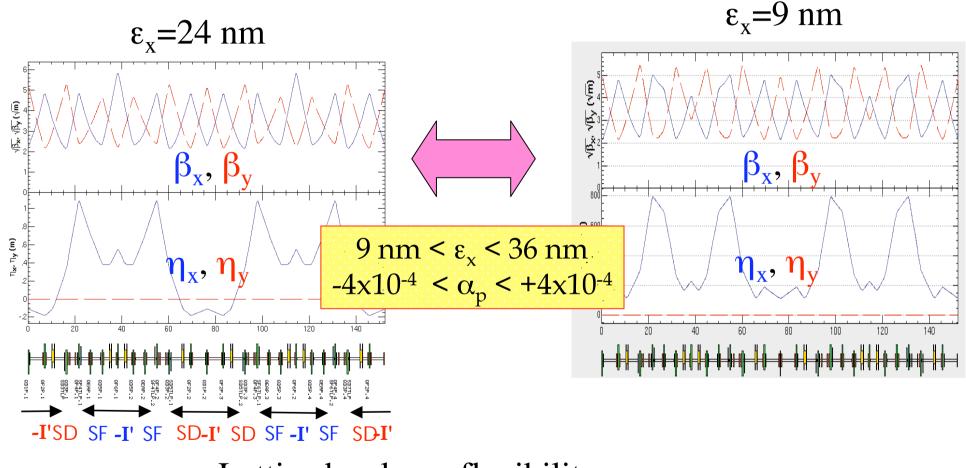
Incoming beam passes through the center of QCS, outgoing beam passes off center and is kicked outside.

Interaction Region for SuperKEKB

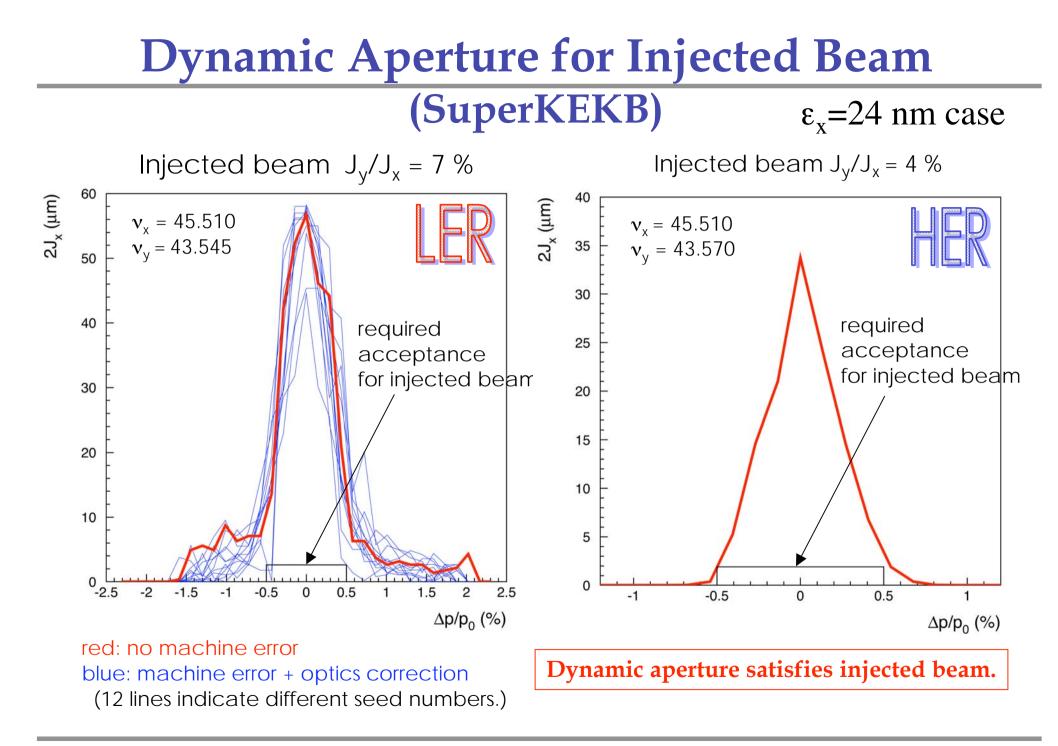

QCS for SuperKEKB and KEKB


Construction of QCS Realtype Magnet R&D

We have real QCS magnet to squeeze beta at IP up to 3 mm.



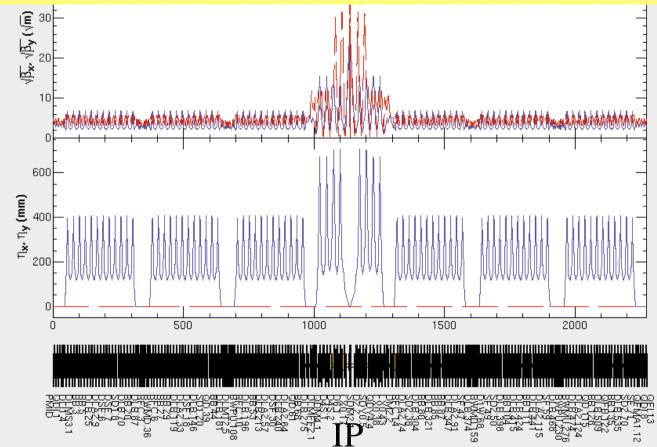
SuperKEKB LER (3.5 GeV)


Large Flexible Arc Lattice

Magnet configuration is exactly same.

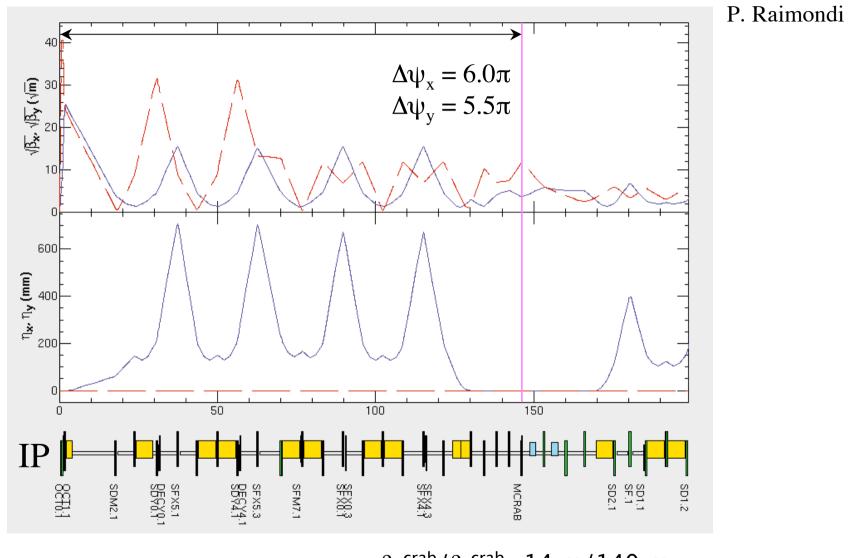
Lattice has large flexibility.

 ϵ_x and α_p can be adjusted independently.



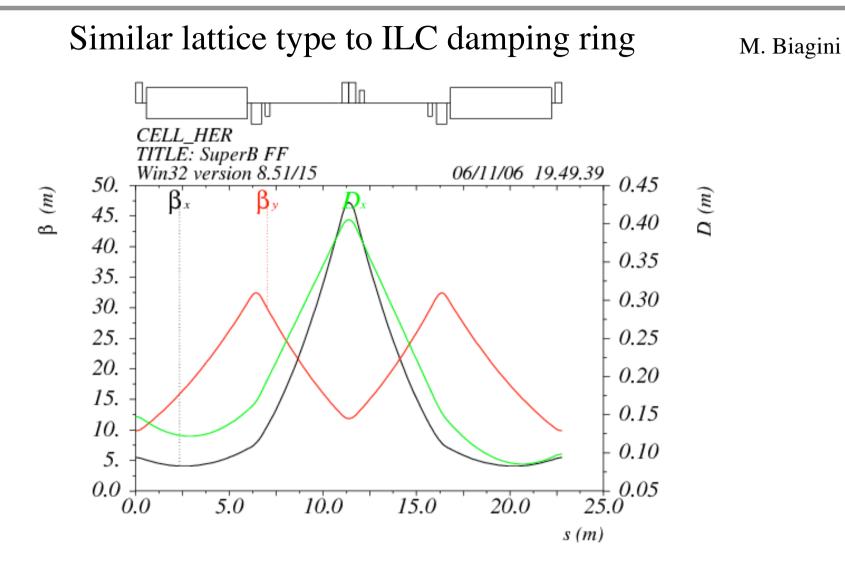
SuperB

Luminosity x 10 ³⁶		1	2	,4	3,4			
Circumference (m)	2250	2250	2250	2250	2250	2250		
Revolution frequency (MHz)	0,13	0,13	0,13	0,13	0,13	0,13		
Eff. long. polarization (%)	0	80	0	80	0	80		
RF frequency (MHz)	476	476	476	476	476	476		
Harmonic number	3570	3570	3570	3570	3570	3570		
Momentum spread	8,4E-04	9,0E-04	1,0E-03	1,0E-03	1,0E-03	1,0E-03		
Momentum compaction	1,8E-04	3,0E-04	1,8E-04	3,0E-04	1,8E-04	3,0E-04		
Rf Voltage (MV)	6	18	6	18	7,5	18		
Energy loss/turn (MeV)	1,9	3,3	2,3	4,1	2,3	4,1		
Number of bunches	1733	1733	3466	3466	3466	3466		
Particles per bunch x10 ¹⁰	6,16	3,52	5,34	2,94	6,16	3,52		
Beam current (A)	2,28	1,30	3,95	2,17	4,55	2,60		
Beta y* (mm)	0,30	0,30	0,20	0,20	0,20	0,20		
Beta x* (mm)	20	20	20	20	20	20		
Emit y (pmr)	4	4	2	2	2	2		
Emit x (nmr)	1,6	1,6	0,8	0,8	0,8	0,8		
Sigma y* (microns)	0,035	0,035	0,020	0,020	0,020	0,020		
Sigma x* (microns)	5,657	5,657	4,000	4,000	4,000	4,000		
Bunch length (mm)	6	6	6	6	6	6		
Full Crossing angle (mrad)	34	34	34	34	34	34		
Wigglers (#)	4	2	4	4	4	4		
Damping time (trans/long)(ms)	32/16	32/16	25/12.5	25/12.5	25/12.5	25/12.5		
Luminosity lifetime (min)	10,4	5,9	7,4	4,1	6,1	3,5		
Touschek lifetime (min)	5,5	38	2,9	19	2,3	15		
Effective beam lifetime (min)	3,6	5,1	2,1	3,4	1,7	2,8		
Injection rate pps (100%)	4,9E+11	2,0E+11	1,5E+12	5,0E+11	2,1E+12	7,2E+11		
Tune shifts (x/y) (from formula)	0.004/0.17	0.004/0.17	0.007/0.16	0.007/0.16	0.009/0.2	0.009/0.2		
RF Power (MW)	1	7	3	5	4	4		

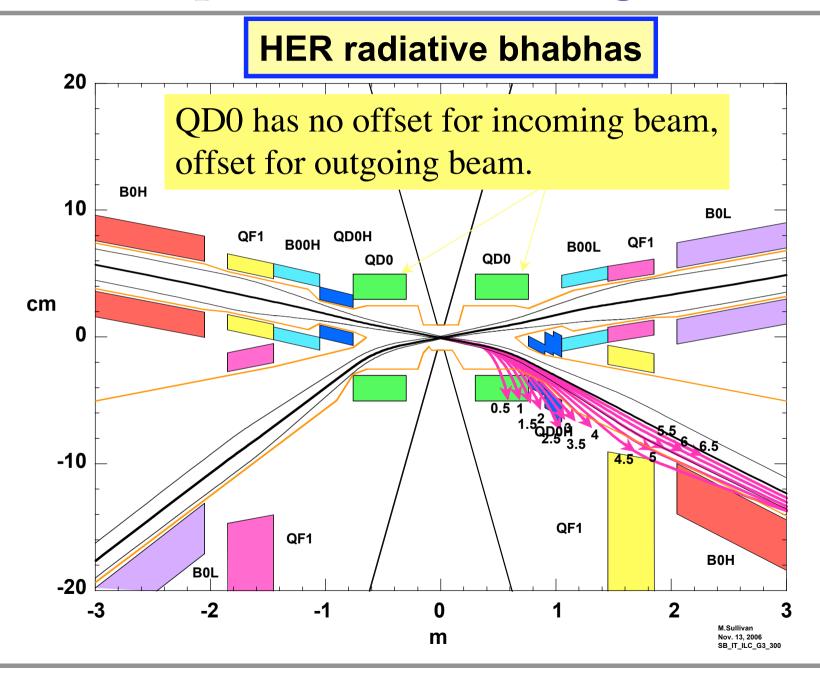

SuperB-HER

Conceptual lattice, no fringe effect, no multipole elements, no skew quads, no crossing angle... etc.

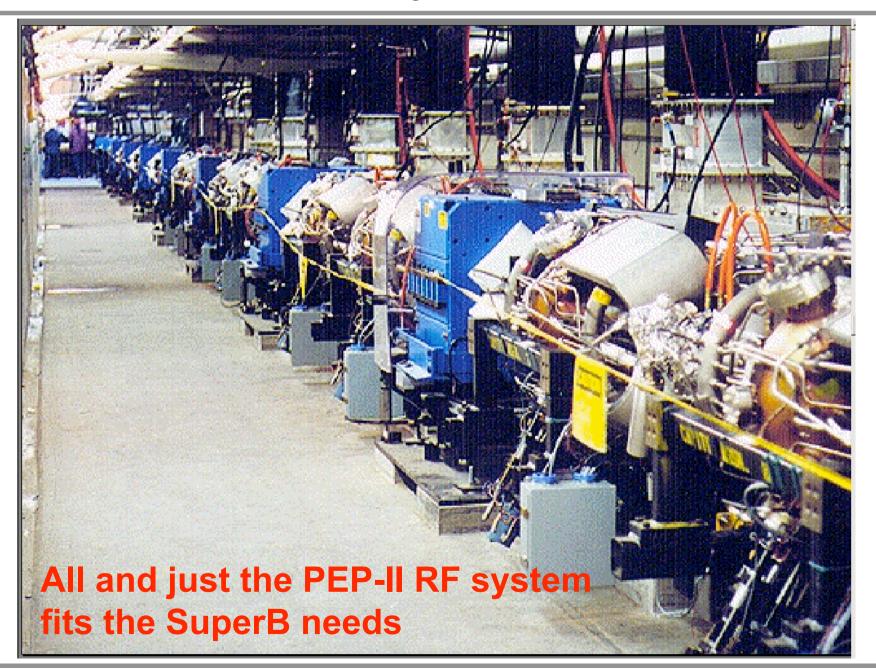
All PEP-II magnets are used to make the low emittance lattice, modifying the ILC DR design.


Final Focus with Crab Waist

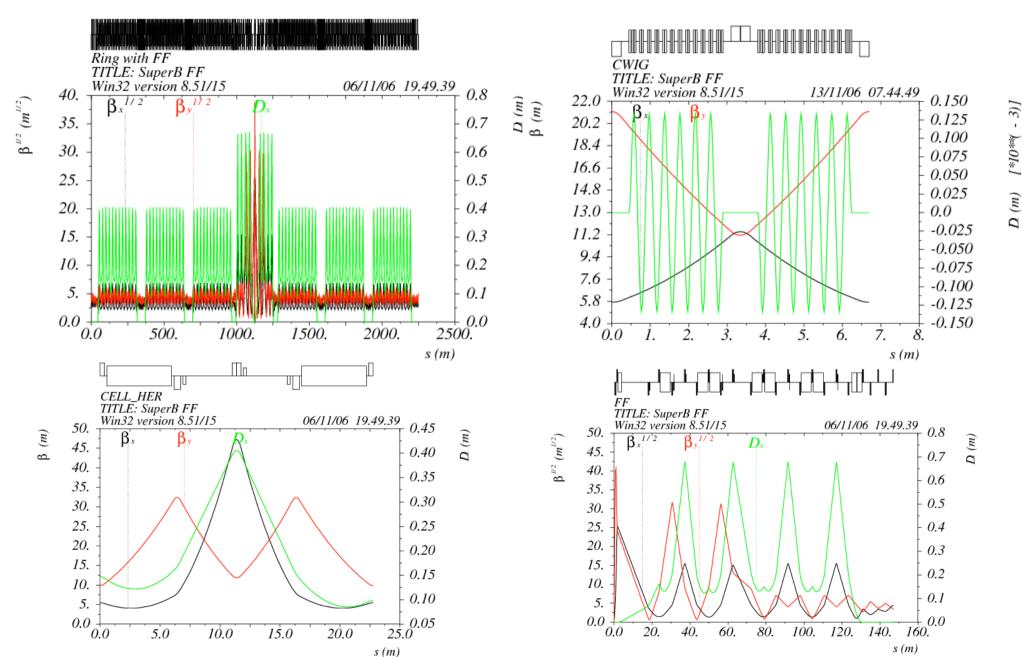
 $\beta_{x}^{*}/\beta_{y}^{*} = 20 \text{ mm}/200 \ \mu\text{m}$


 $\beta_x^{crab}/\beta_y^{crab}=14 \text{ m}/140 \text{ m}$ Sextupole(thin) for crab waist

Ultra-low Emittance Arc Lattice



Emittance ε_x can not be adjusted independent on momentum compaction α_p .


SuperB Interaction Region

RF System

HER Ring Lattice

	LER	HER Loss		HER	LER	HER RF	LER RF		LER magne		Control	Injector	Lights	Total
	Energy	-	per turn	Current	Current	power	power	power	power	H20 Powe	-	Power	and HVAC	-
GeV	GeV	MeV	MeV	Amp	Amp	MW	MW	MW	MW	MW	MW	MW	MW	MW
7,00	3,99	3,30	1,89	1,30	2,28	8,6	8,6	4,0	3,0	2,4	0,5	4,0	3,0	34,1
7,25	3,85	3,80	1,64	1,26	2,36	9,5	7,8	4,3	2,8	2,4	0,5	4,1	3,0	34,5
7,50	3,72	4,35	1,44	1,21	2,45	10,6	7,0	4,6	2,6	2,5	0,5	4,3	3,0	35,0
7,75	3,60	4,96	1,26	1,17	2,53	11,6	6,4	4,9	2,4	2,5	0,5	4,4	3,0	35,8
8,00	3,49	5,63	1,11	1,14	2,61	12,8	5,8	5,2	2,3	2,6	0,5	4,6	3,0	36,8
8,25	3,38	6,37	0,98	1,10	2,69	14,0	5,3	5,6	2,1	2,7	0,5	4,7	3,0	37,9
8,50	3,28	7,17	0,87	1,07	2,77	15,4	4,8	5,9	2,0	2,8	0,5	4,9	3,0	39,3
8,75	3,19	8,06	0,77	1,04	2,85	16,8	4,4	6,3	1,9	2,9	0,5	5,0	3,0	40,8
9,00	3,10	9,02	0,69	1,01	2,93	18,2	4,1	6,6	1,8	3,1	0,5	5,1	3,0	42,4
	Beam cur	rent scales	s inversely	with beam	energy.									
	Assumes	RF power	is 50% effi	cient.										
	Assumes	sumes water newer to remove other generated newer is equal to 10% of removed newer												
	Magnet po	ower scale:	wer scales as the square of the energy.							Vall			Ροι	ver
	Radiation	power sca	les as the	4th power	of the ener	gy.						49		
											ba	20	МЛ	Vat
					Power vs	HER Ener	av		a		IIIU	30		ver Vat
		45,0												
		43,0	·											
		41,0												
		39,0												
		37,0												
		1 00				-								
		35,0 WW												
		33,0												
		31,0												
		29,0												
		27,0												
		25,0		1	1	r								
							o o <i>c</i> o		0.50					
			6,00 E	3,50 7,	00 7,5	50 8,0	0 8,50) 9,00	9,50					

3 Super-B Accelerator

- 3.1 Accelerator overview (Seeman+Raimondi)
 - 3.1.1 History of B-Factories
 - 3.1.2 Key issues for a Super-B Factory (Raimondi) Key items:

Luminosity Crossing angle/crab waist/ip Beam lifetime and injection Backgrounds Beam <u>emittances</u> and stability Polarization Power Costs

3.1.3 Site requirements

3.2 Parameters (Seeman)

- 3.2.1 Nominal parameters for 1 x 1036 at the 4S
- 3.2.2 Upgrade parameters at 2.4 x 1036 at the 4S
- 3.2.3 Luminosity at the Psi' (3.8 GeV cm)
- 3.2.4 Yearly integrated luminosity
- 3.2.5 Energy asymmetry (Raimondi)

3.3 Layout

- 3.3.1 HER (Biagini)
- 3.3.2. LER (Biagini)
- 3.3.3 Interaction region (Sullivan)
- 3.3.4 Injector (Seeman+Raimondi)

3.4 Interaction region (Sullivan)

- 3.4.1 Geometry
- 3.4.2 Beam trajectory
- 3.4.3 Magnets
- 3.4.4 Vacuum chambers
- 3.4.5 Synchrotron radiation
- 3.4.6 Lost particles (detector)
- 3.4.7 Backgrounds (detector)
- 3.4.8 Vacuum profile

3.5 Magnet lattice and optics

- 3.5.1 LER lattice (Biagini)
- 3.5.2 HER lattice (Biagini)
- 3.5.3 Interaction region (Raimondi)
- 3.5.4 Detector solenoid compensation (Biagini+Raim
- 3.5.5 Dynamic aperture (Cai, Wolski)

3.6 Imperfections and errors

- 3.6.1 Tolerances and errors (Cai)
- 3.6.1 Vibrations and stability (Seeman, Servi)
- 3.6.1 Low emittance tuning (Wolski)
- 3.6.1 Final Focus tuning (Raimondi, Servi)
- 3.7 Intensity dependent effects
 - 3.7.1 Beam-beam interaction (Shatilov)
 - 3.7.2 Lifetimes (Boscolo+Wienands+Paoloni)
 - 3.7.3 Intra Beam Scattering (Wienands+Wolski)
 - 3.7.4 Electron cloud instability (Heifets, Pivi)
 - 3.7.5 Fast ion instability (Heifets, Wang)
 - 3.7.6 Space charge (<u>Heifets</u>)
 - 3.7.7 Higher order modes (Novokhatski)
 - 3.7.8 Single bunch impedance effects (Heifets)
 - 3.7.9 CSR (Agoh)
 - 3.7.10Multi-bunch instabilities (Wienands)
- 3.8 Magnet systems (Wienands+Yocky+Biagini)
 - 3.8.1 LER dipoles
 - 3.8.2 LER quadrupoles
 - 3.8.3 LER sextupoles
 - 3.8.4 LER octupoles
 - 3.8.5 HER dipoles
 - 3.8.6 HER quadrupoles
 - 3.8.7 HER sextupoles
 - 3.8.8 HER octupoles
 - 3.8.9 Correction magnets
 - 3.8.9 Damping wigglers (Koop →Levichev)
 - 3.8.10 Interaction region magnets (Ecklund)

3.6 RF systems (Wienands+Seeman)

- 3.7.1 RF parameters
- 3.7.2 RF cavities
- 3.7.3 Klystrons
- 3.7.4 Power supplies
- 3.7.5 RF controls
- 3.7.6 RF feedback
- 3.7.7 High current beam loading

3.7 Vacuum system (Wienands,....)

- 3.8.1 Arc vacuum system
- 3.8.2 Straight section vacuum system
- 3.8.3 Expansion bellows
- 3.8.4 Collimation

- 3.8 Instrumentation and controls (Fisher)
 - 3.9.1 Beam position monitors (Fisher)
 - 3.9.2 Beam size monitors (Fisher)
 - 3.9.4 Longitudinal feedback (Drago)
 - 3.9.5 Transverse feedback (Drago)
 - 3.9.6 IP feedback (Sullivan+Decker)
 - 3.9.7 Beam abort system (Fisher)
 - 3.9.8 Temperature monitor (Ecklund)
 - 3.9.9 Temperature control (Ecklund)
 - 3.9.10 Control system (Fisher, Stecchi)

3.11 Injection system (Vaccarezza+Seeman)

- 3.11.1 Requirements
- 3.11.2 Layout
- 3.11.3 Components
- 3.11.4 Timing
- 3.12 Polarization (Koop)
 - 3.12.1 Geometry
 - 3.12.2 Spin rotators
 - 3.12.3 Spin transport
 - 3.12.4 Measurement

3.13 Site and Utilities

- 3.13.1 Tunnel (Seeman)
- 3.13.2 AC Power (Seeman)
- 3.13.3 Cooling system (Seeman)
- 3.13.4 Air conditioning (Seeman)
- 3.14 References

Frascati, Sept. 25, 2006 Note: **G-xx**

DAΦNE UPGRADE FOR SIDDHARTA RUN

DAΦNE Team, LNF-INFN D. Shatilov, I.A.Koop, BINP

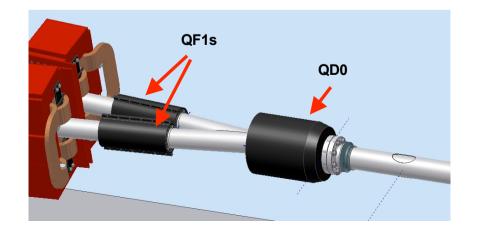
1. Introduction

The Siddharta experiment will be ready to be installed in DAΦNE by mid-2007. It seems very feasible to install an Interaction Region suitable to exploit the "Large crossing angle" and "crabbed waist" concept. This new scheme for luminosity increase in e⁺e⁻ colliders has been extensively studied, for example it has been presented at the 2nd Frascati Workshop on SuperB-Factory, March 2006 [1]. A combination of large crossing angle, together with very small beam sizes at the IP, and the "crabbed vertical waist", should in theory give us the possibility of reaching a luminosity of the order of 10³³ cm⁻² s⁻¹, with very little modifications of the machine, with beam currents similar to ones reached during the KLOE run [2]. This scheme does not need to have very short bunches in the rings (very expensive and difficult), in order to have very low β-functions and little hourglass effect.

Other improvements will be the installation of fast stripline kickers, as the ones that will be used in the ILC damping rings. This should increase the injection efficiency from 50% to100%, with consequent background reduction and possibly higher beam currents, with a further gain in peak and integrated luminosity.

Wigglers poles will also be modified in order to improve the dynamic aperture, with benefits in beam lifetimes and background.

Ti Coating in the positron wiggler vacuum chambers will hopefully ameliorate the ecloud instability threshold and should allow us to further increase the current.


This paper will review the principle of the new collision scheme and present a summary of the beam-beam studies performed in order to estimate the luminosity gain. Moreover a description of the lattice and hardware modifications needed for its implementation will be given.

2. The large crossing angle and crab waist concepts

In high luminosity colliders one of the key points is to have very short bunches, since this allows to decrease β_y * at the IP. This values cannot indeed be much smaller than the bunch-length without incurring in the "hourglass" effect. Moreover high luminosity requires a small vertical emittance and large horizontal size and emittance to minimize the beam-beam effect. Unfortunatley for a ring it is relatively easy to achieve small horizontal emittance and horizontal size and it is very hard to shorten the bunch length σ_z .

Novosibirsk is designing a tau-charm factory based On The Crab-Waist

Large piwinski angle and Crab Waist will be used in the Dafne run next fall to try to improve the luminosity by a factor > 3

