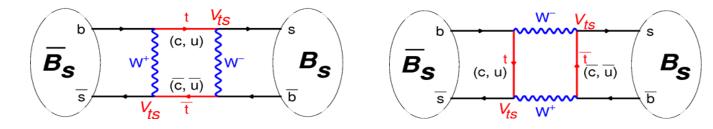

B_s mixing and Decays at the Tevatron

Mossadek Talby CPPM - Université de la Méditerranée (On behalf of the DØ and CDF Collaborations)

> FPCP 2007 Tuesday, May 15, 2007


Outline

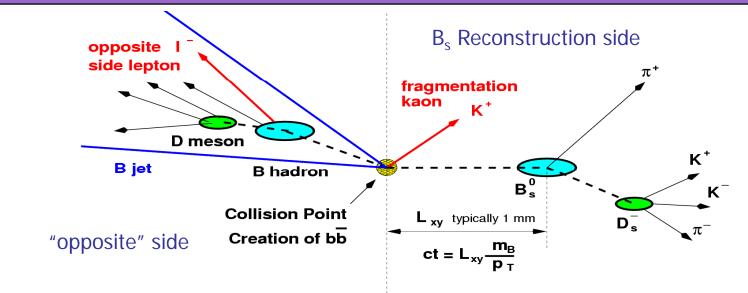
- B_s mixing
 - Ingredients and method
 - DØ and CDF results
- *b*-Hadrons lifetimes
 - Motivation
 - B_{s} lifetimes (τ_{Bs} and $\Delta\Gamma_{Bs}$)
 - $\Lambda_{\rm b}$ lifetime
- Summary

B_s mixing

B_s mixing

 B^0 and \overline{B}^0 are quantum superposition of two mass eigenstates B_H and B_L :

$$B_{L,H} = p|B^{0}\rangle \pm q|\bar{B}^{0}\rangle \quad \text{and} \quad P(t)_{B^{0}\to\bar{B}^{0}} = \frac{e^{-\frac{t}{\tau}}}{2} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos(\Delta m t)\right] \left|\frac{q}{p}\right|^{2}$$
$$\Delta m = m_{H} - m_{L} \quad , \quad \Delta m_{s} = \frac{G_{F}^{2}}{6\pi^{2}} \eta_{B} m_{B_{s}} f_{B_{s}}^{2} B_{B_{s}} m_{W}^{2} S(m_{t}^{2}/m_{W}^{2}) |V_{ts}^{\star} V_{tb}|^{2}$$


Hadronic uncertainties cancel in ratio:

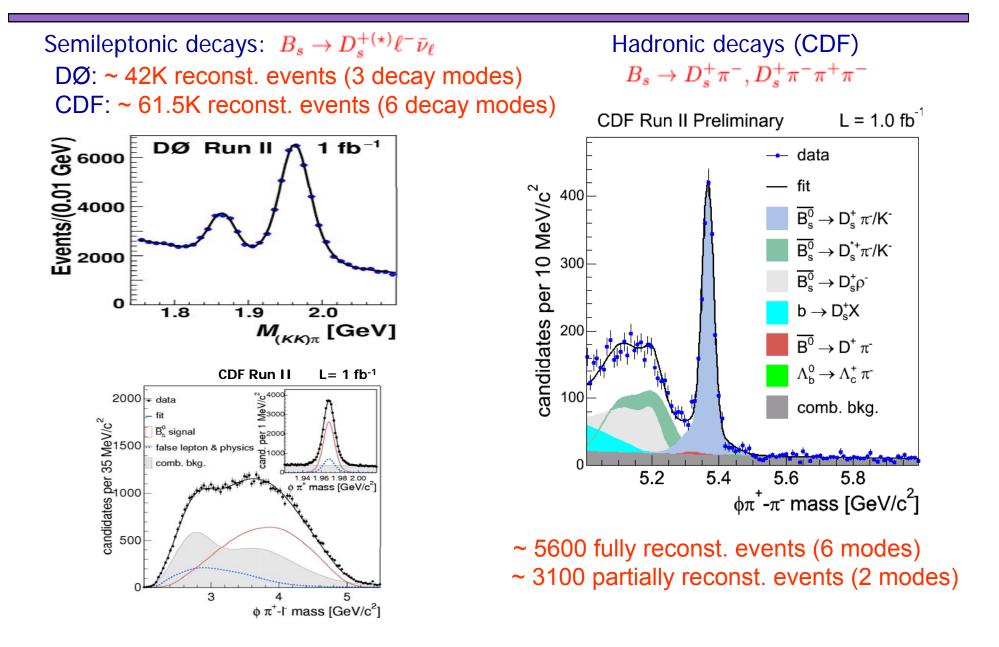
$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2} , \quad \xi = \sqrt{\frac{B_{B_s} f_{B_s}^2}{B_{B_d} f_{B_d}^2}} = 1.21^{+0.047}_{-0.035} \quad \text{(Okamoto, Lattice 05)}$$

B_d oscillation very well measured (HFAG 2007): $\Delta m_d = 0.507 \pm 0.004 \text{ ps}^{-1}$ From fits of unitarity triangle, assuming Standard Model and using all available information (CKMFitter group): $\Delta m_s = 18.9^{+5.7}_{-2.8} \text{ ps}^{-1}$ (Eur. Phys. J. C41)

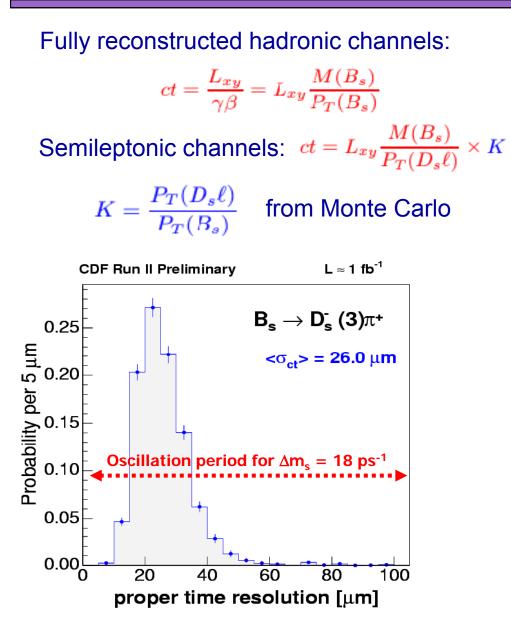
$$\Rightarrow \Delta m_s > 30 \times \Delta m_d$$

Analysis ingredients

- Analysis ingredients:
 - Reconstruct B_s decays and determine B_s flavor at decay from decay products,
 - Mesure proper time of B_s decays,
 - Determine B_s flavor at production (opposite-side and/or same-side tagging),
 - Mesure Δm_s from an unbinned maximum likelihood fit of mixed and unmixed events:


 $P(t)_{B^0 \to B^0, \bar{B}^0} \cong \frac{1}{2\tau} e^{-\frac{t}{\tau}} [1 \pm \mathcal{A} \mathcal{D}\cos(\Delta m_s t)], \text{ dilution } \mathcal{D} = 1 - 2\eta, \ \eta = \text{mistag prob.}$

Fit for \mathcal{A} at different Δm_s . For true Δm_s , $\mathcal{A} = 1$, otherwise $\mathcal{A} = 0$.


• Statistical Significance of Δm_s measurement:


Significance
$$\propto \sqrt{S \ \epsilon D^2} \times \sqrt{\frac{S}{S+B}} \times e^{-\frac{1}{2}(\sigma_{ct} \Delta m_s)^2}$$

B_s signal reconstruction (1 fb⁻¹)

Proper decay time

b-flavor tagging @ production

CDF

HFAG 2007

ь

Two methods: opposite-side flavor tagging and same-side flavor tagging:

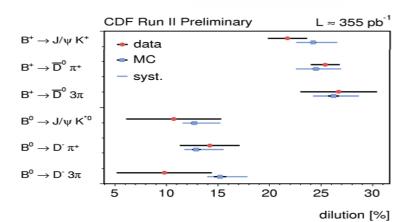
- 1. Opposite-side flavor tagging (DØ+CDF):
 - Soft Lepton tagging
 - Jet Charge tagging
 - Secondary vertex charge (DØ)
 - Charge of identified kaon (CDF).

The performance of OST taggers measured in kinematically similar B^+ and B_d samples.

- 2. Same-side Kaon Tagging (CDF):
 - Use the closest fragmentation track correlated to B_s production flavor.
 - SSKT performance cannot be determined on data (rely on MC).

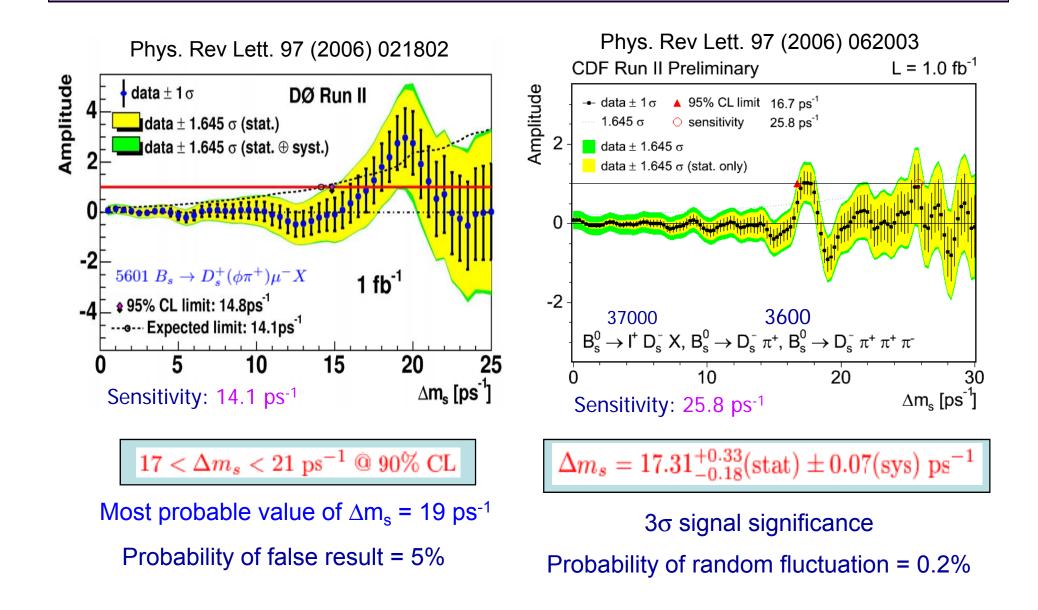
 $\epsilon \mathcal{D}^2 = 3.7\%$ (hadronic decays)

 $\epsilon \mathcal{D}^2 = 4.8\%$ (semileptonic decays)


 $\begin{array}{c|c} & \langle \epsilon \mathcal{D}^2 \rangle \left(\%\right) & \Delta m_d \left(\mathrm{ps}^{-1} \right) \\ \\ \hline \mathrm{D} \varnothing & 2.5 \pm 0.2 & 0.506 \pm 0.020_{\mathrm{stat}} \pm 0.016_{\mathrm{syst}} \end{array}$

 $0.509 \pm 0.010_{\rm stat} \pm 0.016_{\rm syst}$

 0.507 ± 0.004


$b_s B_s^0$	$b - \frac{b}{\overline{s}} \bar{B}_{s}^{2}$
$\int_{u}^{s} K^{+}$	$\tilde{u}^{s} K^{-}$
((

 1.8 ± 0.1

Performances of combined OST taggers

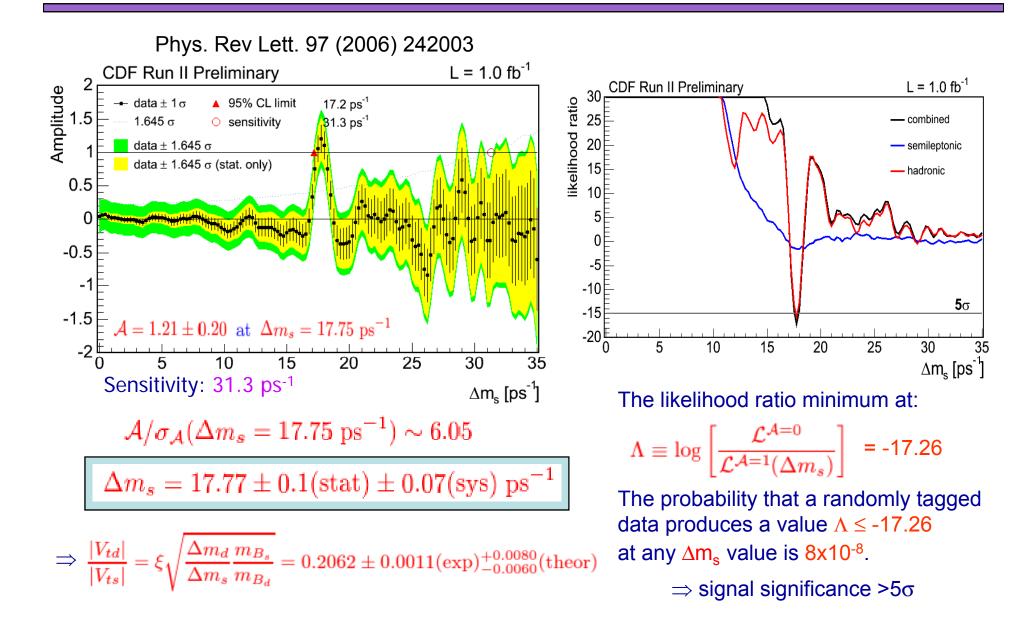
Δm_s measurements (spring 2006)

Improved CDF analysis

- Increase of B_s signal yield:
 - add partially reconstructed decays:

 $\bar{B}^0_s \to D^{\star+}_s \pi^-, \ D^+_s \to D^+_s \gamma/\pi^0 \ \text{ and } \ \bar{B}^0_s \to D^+_s \rho^-, \ \rho^- \to \pi^- \pi^0 \ \text{ with } \ D^+_s \to \phi \pi^+$

- use particle ID in the selection (Kaon identification)
- use Neural Net selection for hadronic modes
- use loose kinematic selection


For $B_s \to D_s^{+(\star)} \ell^- \bar{\nu}_{\ell}$ gain=66% (37000 \to 61500 signal events)

Including hadronic decays \Rightarrow Effective statistical size increased by a factor of 2.5 !

- b-flavor tagging:
 - add opposite side Kaon tag.
 - use NN to combine all opposite side taggers (gain=20%)
 - use NN for same side tagger (gain=10%)

Decay source	Signal	S/B	gain
$ar{B}^0_s o D^+_s (\phi \pi^+) \pi^-$	2000	11.3	13%
Partially reconstructed $ar{B}^0_s$	3100	3.4	-
$\bar{B}^0_s \to D^+_s (\bar{K}^{\star}(892)^0 K^+) \pi^-$	1400	2.0	35%
$\bar{B}^0_s \rightarrow D^+_s (\pi^+\pi^-\pi^+)\pi^-$	700	2.1	22%
$\bar{B}^0_s \rightarrow D^+_s (\phi \pi^+) \pi^- \pi^+ \pi^-$	700	2.7	92%
$\bar{B}^0_s \to D^+_s (\bar{K}^\star (892)^0 K^+) \pi^- \pi^+ \pi^-$	600	1.1	110%
$B^0_s \to D^+_s (\pi^+\pi^-\pi^+)\pi^-\pi^+\pi^-$	200	2.6	-

Improved CDF analysis

b-hadrons lifetimes

b-Hadrons lifetimes

• Important test of "non-spectator" effects in heavy hadrons decays:

 \Rightarrow "non-spectator" effects give rise to lifetime hierarchy among *b*-hadrons:

 $\tau(B^+) \ge \tau(B_d) \approx \tau(B_s) > \tau(\Lambda_b) \gg \tau(B_c)$

 Contribution of light quark(s) in *b*-hadron decay width computed in the framework of the Heavy Quark Expansion (expansion in 1/m_b):

$$\Gamma(H_b \to f) = |\text{CKM}|^2 \sum_n c_n^{(f)} \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^n \langle H_b | O_n | H_b \rangle$$

Non-perturbative corrections arrise only at $\mathcal{O}(\Lambda_{\rm QCD}^2/m_b^2)$

Difference between meson and baryon lifetimes appears at $\mathcal{O}(\Lambda_{\text{QCD}}^2/m_h^2)$

Splitting of the meson lifetimes occurs at $\mathcal{O}(\Lambda_{\rm QCD}^3/m_b^3)$

Recent theoretical predictions and experimental averages for the lifetime ratios:

	$rac{ au(B^+)}{ au(B_d)}$	$rac{ au(B_s)}{ au(B_d)}$	$\frac{\tau(\Lambda_b)}{\tau(B_d)}$
NLO QCD + $\mathcal{O}(1/m_b^4)$ in HQE	1.06 ± 0.02	1.00 ± 0.01	0.88 ± 0.05
Experimental averages (PDG2006)	1.076 ± 0.008	0.957 ± 0.027	0.84 ± 0.05
	СТ	contino Eur Dhur	L C 22 (2004)

C. Tarantino, Eur. Phys. J. C 33 (2004)

b-Hadrons lifetimes @ Tevatron RunII

Both CDF and DØ have performed a number of *b*-Hadrons lifetimes measurements for all *b*-Hadron species. For $\tau(B^+)$, $\tau(B^0)$, $\tau(B^+)/\tau(B^0)$ and $\tau(B_c)$ the results are:

Experiment	Method	$\int \mathcal{L} dt ~(\mathrm{pb}^{-1})$	$ au(B^+)~(\mathrm{ps})$	Experiment	Method	$\int {\cal L} dt ({\rm pb}^{-1})$	$ au(B^0)$ (ps)
CDF	Excl. $J/\psi K$	1000	$1.630 \pm 0.016 \pm 0.011^{\rm P}$	CDF	Excl. $J/\psi K^{\star 0}$	260	$1.541 \pm 0.050 \pm 0.020$
CDF	Incl. $D^0 \ell$	260	$1.653 \pm 0.029 ^{+0.033}_{-0.031} { m P}$	CDF	Incl. $D^{(\star)}\ell$	260	$1.473 \pm 0.036 \pm 0.054^{\rm P}$
CDF	Excl. $D^0\pi$	360	$1.661 \pm 0.027 \pm 0.013^{\mathrm{P}}$	CDF	Excl. $D^-(3)\pi^+$	360	$1.511 \pm 0.023 \pm 0.013^{\rm P}$
D.11 (D-) 1 (05 + 0)	011 + 0.011		CDF	Excl. $J/\psi K_s$	1000	$1.551 \pm 0.019 \pm 0.011$
Belle: $\tau(B)$	$() = 1.635 \pm 0.00$	011 ± 0.011 ps		DØ	Excl. $J/\psi K^{\star 0}$	450	$1.530 \pm 0.043 \pm 0.023$

DØ

Experiment	Method	$\int \mathcal{L} dt (\mathrm{pb}^{-1})$	$ au(B^+)/ au(B^0)$ (ps)
CDF	Excl. $J/\psi K$	1000	$1.051 \pm 0.023 \pm 0.004^{\rm P}$
CDF	Incl. $D\ell$	260	$1.123 \pm 0.040^{+0.041\mathrm{P}}_{-0.039}$
CDF	Excl. $D\pi$	360	$1.10 \pm 0.02 \pm 0.01^{\mathbf{P}}$
DØ	$D^{\star +} \mu \; D^0 \mu$	440	$1.080 \pm 0.016 \pm 0.014$

Belle: $\tau(B^+)/\tau(B^0) = 1.066 \pm 0.008 \pm 0.008$ ps

Belle: $\tau(B^0) = 1.534 \pm 0.008 \pm 0.010 \text{ ps}$

Excl. $J/\psi K_s$

Experiment	Method	$\int \mathcal{L} dt (\mathrm{pb}^{-1})$	$ au(B_c)$ (ps)
CDF	$J/\psi \; e$	360	$0.463^{+0.073}_{-0.065}\pm0.036$
DØ	$J/\psi~\mu$	210	$0.448^{+0.123}_{-0.096}\pm0.121^{\rm I\!P}_{-}$

1000

P=Preliminary

 $1.492 \pm 0.075 \pm 0.047^{P}$

B_s lifetime measurements

B_s lifetime measurements

In the SM the light and heavy mass eigenstates of the mixed B_s system are expected to have a sizeable decay width difference:

 $\Delta \Gamma_s = \Gamma_L - \Gamma_H = 0.096 \pm 0.039 \text{ ps}^{-1}$

If CP violation is neglected B_L and B_H are expected to be CP eigenstates:

- $B_{\rm L} = {\rm CP} \; {\rm even} \; : \; {\rm short} \; {\rm lifetime \; component} \; \tau_{\rm L} = 1/\Gamma_{\rm L}$
- $B_{\rm H} = {\rm CP} \ {\rm odd} \ : \ {\rm long} \ {\rm lifetime} \ {\rm component} \ \tau_{\rm H} = 1/\Gamma_{\rm H}$

Various B_s decay channels have different proportions of B_L and B_H eigenstates:

• Flavor specific decays: $B_s^0 \to D_s^+ \ell^- \bar{\nu}_{\ell}$ and $B_s^0 \to D_s^+ \pi^-$ have equal fraction of B_L and B_H at t=0.

Fit to the proper decay lengths distributions with a single signal exponential: \Rightarrow Flavor specific lifetime:

$$\tau(B_s)_{\rm fs} = \frac{1}{\Gamma_s} \frac{1 + \left(\frac{\Delta\Gamma_s}{2\Gamma_s}\right)^2}{1 - \left(\frac{\Delta\Gamma_s}{2\Gamma_s}\right)^2} , \qquad \Gamma_s = \frac{\Gamma_L + \Gamma_H}{2} = \frac{1}{\bar{\tau}(B_s)}$$

• $B_s^0 \rightarrow J/\psi\phi$: contributions from CP even and CP odd states, dominated by CP even. In this decay mode one can measure $\Delta\Gamma_s$ and $\overline{\tau}(B_s) = 1/\Gamma_s$.

B_s lifetime in flavor specific modes

a 120

20

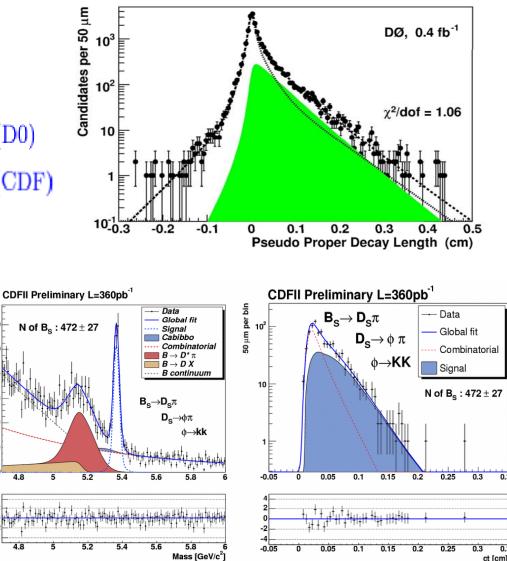
Both CDF and DØ have measured B_s lifetime in $B_s^0 \to D_s^+ \ell^- \bar{\nu}_\ell X$

Results based on respectively 360 and 400 pb⁻¹ are:

$$\tau(B_s)_{\rm fs} = 1.398 \pm 0.044(\text{stat})^{+0.028}_{-0.025}(\text{sys}) \text{ ps}$$
 (D0)

 $\tau(B_s)_{\rm fs} = 1.381 \pm 0.055({\rm stat})^{+0.052}_{-0.046}({\rm sys}) \text{ ps}$ (CDF)

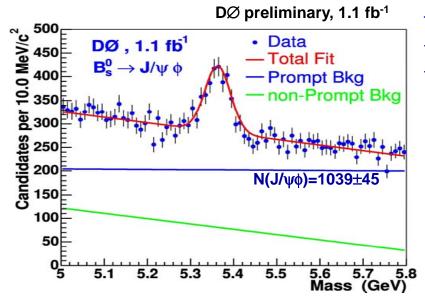
CDF has also measured B_s lifetime in the fully hadronic modes:


 $B_s^0 \to D_s^+ \pi^-$, $B_s^0 \to D_s^+ \pi^+ \pi^- \pi^-$

Analysis based on 360 pb⁻¹.

B_s lifetime extracted from a simultaneous fit to the mass and decay length distributions:

$$\tau(B_s)_{\rm fs} = 1.60 \pm 0.10({\rm stat}) \pm 0.02({\rm sys}) {\rm \,ps}$$

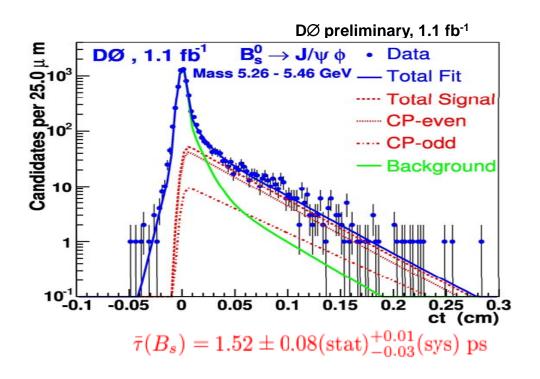

Will be updated for 1 fb⁻¹.

0.35

B_s lifetime in $B_s^0 \rightarrow J/\psi\phi$

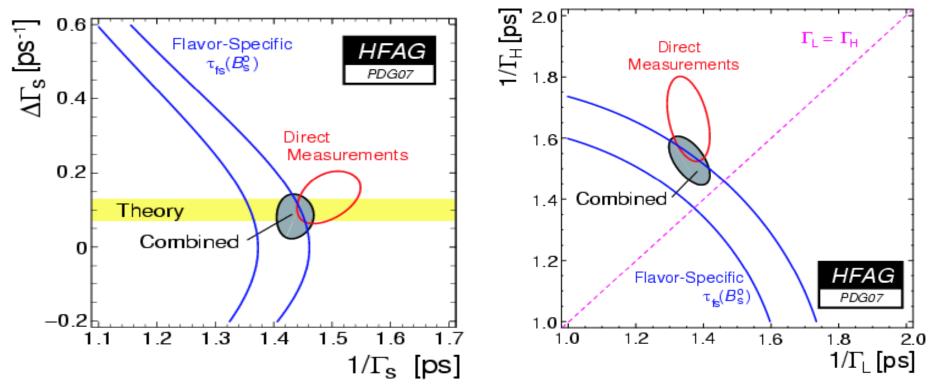
DØ made a new B_s lifetime measurement in $B_s^0 \rightarrow J/\psi\phi$ based on 1.1 fb⁻¹:

 $\Delta\Gamma$ is extracted from a simultaneous unbinned maximum likelihood fit to the proper decay length, the 3 decay angles and the mass. Assuming no CP violation ($\phi_s=0$):


 $\Delta \Gamma = 0.12^{+0.08}_{-0.10}({\rm stat}) \pm 0.02({\rm sys}) \ {\rm ps}^{-1}$

(R. Bernhard and S. Donati talks)

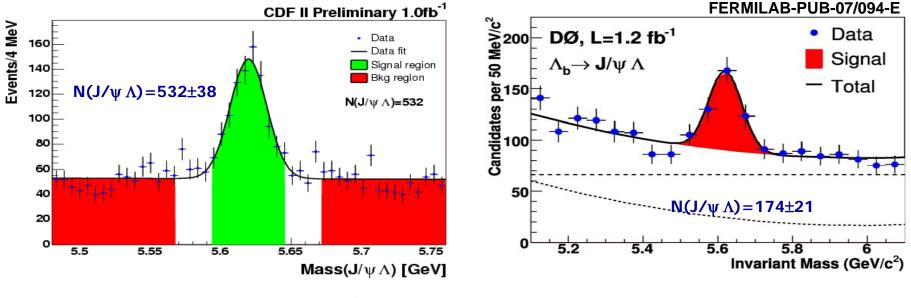
The study of the time dependent angular distribution of the decay products of J/ψ and ϕ allow to separate the two CP components of the decay. Schematically:


 $\frac{d^3\Gamma(t)}{d\cos\theta d\varphi d\cos\psi} \propto |A_{\rm even}(\theta,\varphi,\psi)|^2 + |A_{\rm odd}(\theta,\varphi,\psi)|^2 + \text{interf. term}(\phi_s)$

B_s lifetime in $B_s^0 \rightarrow J/\psi\phi$

$\Lambda_{\rm b}$ lifetime measurements

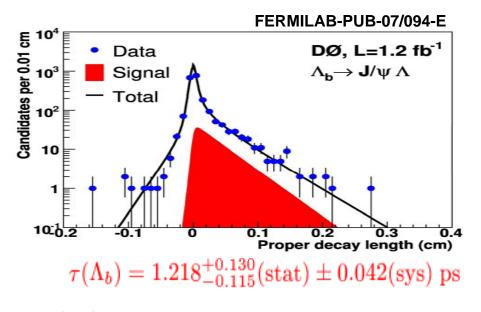
$\Lambda_{\rm b}$ lifetime measurements in $\Lambda_b \rightarrow J/\psi \Lambda(p\pi^-)$


- Both CDF and DØ have measurements based on respectively 1 fb⁻¹ and 1.2 fb⁻¹.
- Similar analysis procedure:

 Λ_b lifetime extracted from an unbinned simultaneous likelihood fit to the mass and proper decay lengths distributions.

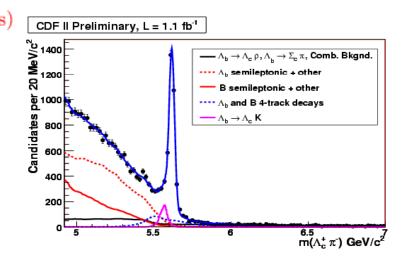
$$ct = \frac{L_{xy}}{\gamma\beta} = L_{xy} \frac{M(\Lambda_b)}{P_T(\Lambda_b)} \quad , \quad L_{xy} = (\vec{r}_{J/\psi} - \vec{r}_{PV}) \cdot \vec{u}_{P_T(\Lambda_b)}$$

 $\Lambda_{\rm b}$ lifetime cross checked using $B^0 \to J/\psi K_s(\pi^+\pi^-)$


 \Rightarrow similar signature and kinematics.

CDF tracking and $\Lambda \rightarrow p\pi^-$ efficiencies > D $\varnothing \Rightarrow$ higher yield

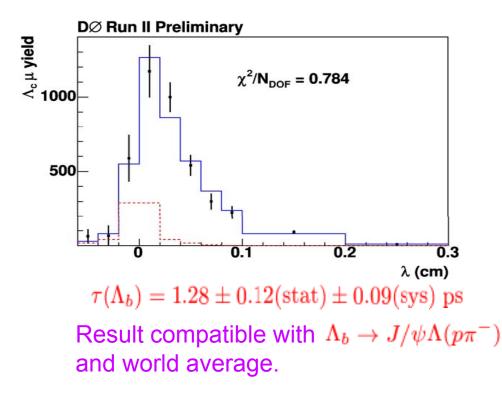
$\Lambda_{\rm b}$ lifetime measurements in $\Lambda_b \rightarrow J/\psi \Lambda(p\pi^-)$

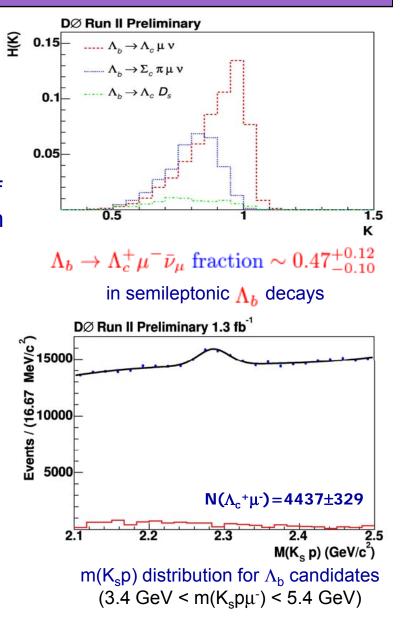


World average (PDG2006): $\tau(\Lambda_b) = 1.230 \pm 0.074 \text{ ps}$

Cross checks:

 $\begin{array}{l} {\rm CDF}: \tau(B^0 \to J/\psi K_s, K^\star) = 1.551 \pm 0.019 ({\rm stat}) \pm 0.011 ({\rm sys}) \\ {\rm D} \varnothing: \tau(B^0 \to J/\psi K_s) = 1.501^{+0.078}_{-0.074} ({\rm stat}) \pm 0.05 ({\rm sys}) \\ {\rm D} \varnothing \ {\rm result} \ {\rm is \ consistent} \ {\rm with} \ {\rm the} \ \tau(\Lambda_b) \ {\rm world} \ {\rm average} \\ {\rm but \ CDF \ result} \ {\rm is \ more \ than \ } 3\sigma \ {\rm above}. \end{array}$


Need more experimental inputs to conclude: Full hadronic modes ?, CDF has about 3000 reconstructed $\Lambda_b \rightarrow \Lambda_c^+ (pK^-\pi^+)\pi^-$ more than $\Lambda_b \rightarrow J/\psi\Lambda$ \Rightarrow Lifetime measurement in progress.



Λ_b lifetime measurements in $\Lambda_b \to \Lambda_c^+(K_s p) \mu^- \bar{\nu}_{\mu} X$

New measurement by DØ based on 1.3 fb⁻¹. Partial reconstruction $\Rightarrow ct = L_{xy} \frac{M(\Lambda_b)}{P_T(\Lambda_c^+ \mu^-)} \times K$ $K = \frac{P_T(\Lambda_c^+ \mu^-)}{P_T(\Lambda_b)}$ estimated from Monte Carlo

 $\tau(\Lambda_b)$ lifetime extracted from the fit of the number of $K_s p\mu^-$ events versus the visible proper decay length

Summary

- B_s mixing:
 - CDF (improved analysis + additional partially reconstructed B_s hadronic decays):

 $\Delta m_s = 17.77 \pm 0.1 (\text{stat}) \pm 0.07 (\text{sys}) \text{ ps}^{-1}$ with >5 σ signal significance.

• *b*-hadrons lifetimes:

For B_s lifetimes measurements in the flavor specific modes:

 $\tau(B_s)_{\rm fs} = 1.398 \pm 0.044 ({\rm stat})^{+0.028}_{-0.025} ({\rm sys}) \ {\rm ps} \ ({\rm D0})$

 $\tau(B_s)_{\rm fs} = 1.381 \pm 0.055({\rm stat})^{+0.052}_{-0.046}({\rm sys}) \ {\rm ps} \ ({\rm CDF})$

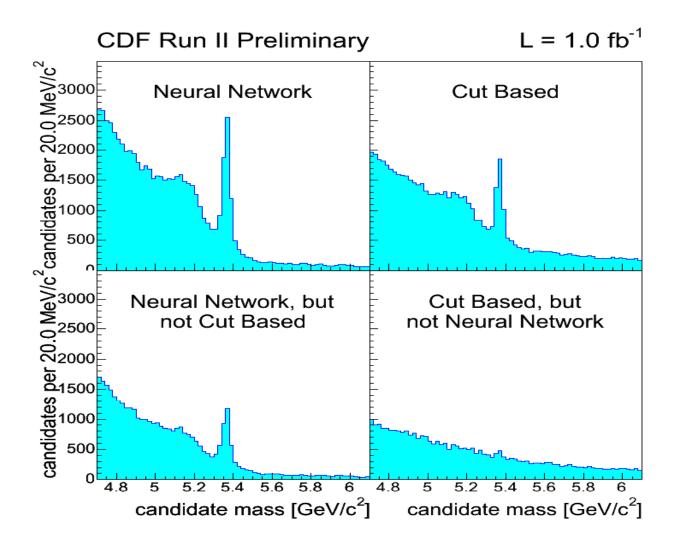
DØ has new B_s lifetimes measurements in $B_s^0 \rightarrow J/\psi\phi$

- DØ: $\tau(B_s) = 1.52 \pm 0.08(\text{stat})^{+0.01}_{-0.03}(\text{sys}) \text{ ps}$

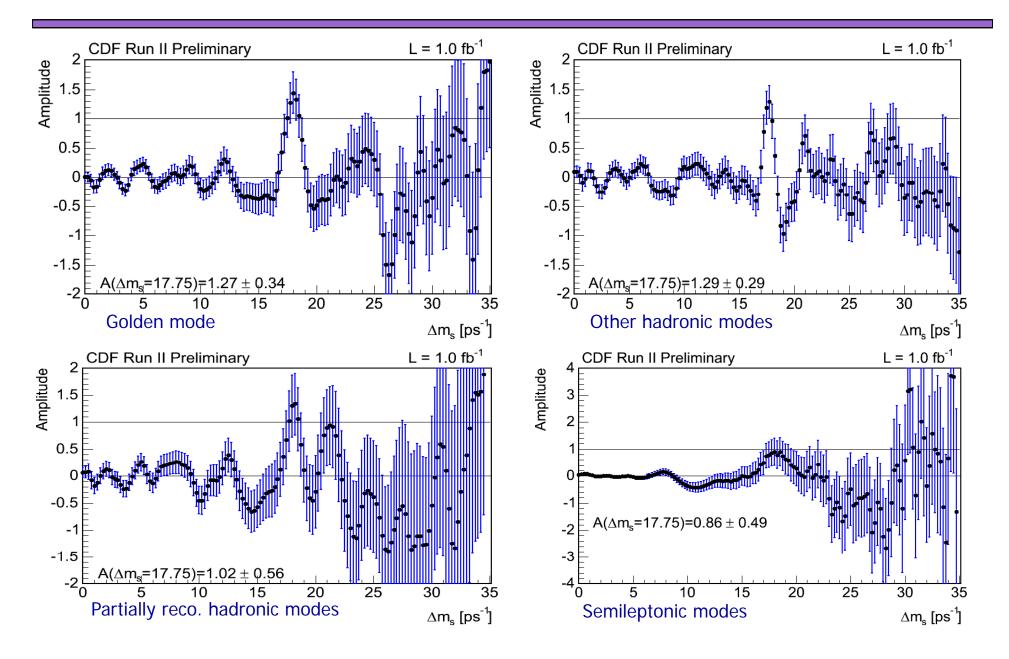
CDF and DØ have updated (1 fb-1) their Λ_b lifetimes measurements in $\Lambda_b \to J/\psi \Lambda$:

- DØ: $\tau(\Lambda_b) = 1.2989 \pm 0.137 (\text{stat}) \pm 0.050 (\text{sys}) \text{ ps}$

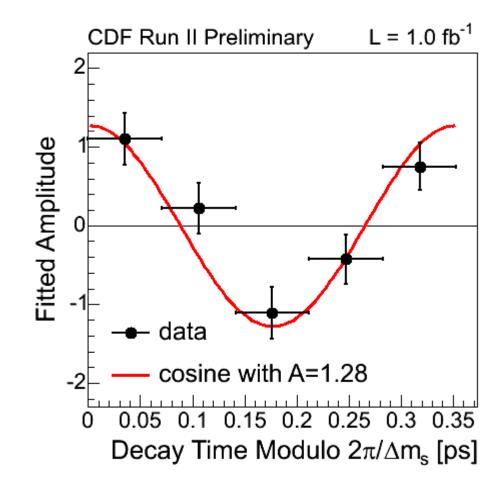
compatible with world average: $au(\Lambda_b) = 1.230 \pm 0.074 ext{ ps}$

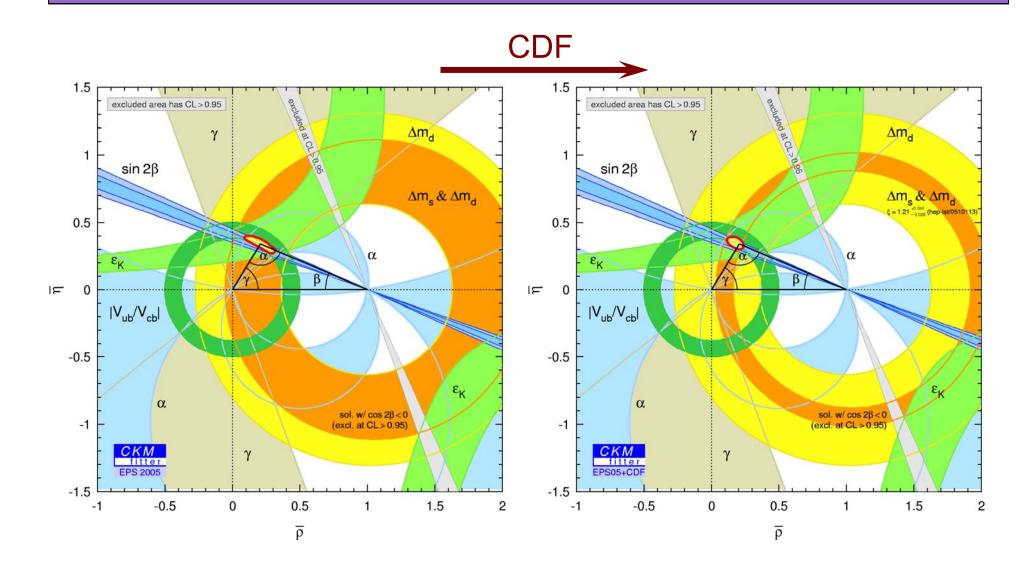

- CDF: $\tau(\Lambda_b) = 1.580 \pm 0.077 (\text{stat}) \pm 0.012 (\text{sys}) \text{ ps}$ 3 σ above world average.

DØ has also a new $\tau(\Lambda_b)$ measurement in $\Lambda_b \to \Lambda_c^+(K_s p) \mu^- \bar{\nu}_\mu X$

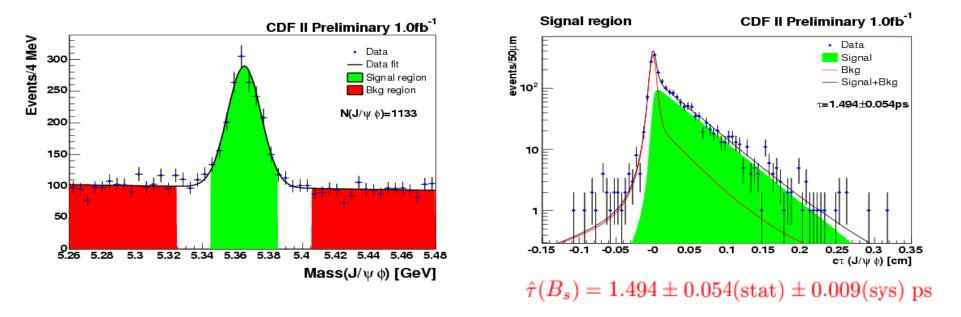

 $\tau(\Lambda_b) = 1.28 \pm 0.12 (\text{stat}) \pm 0.09 (\text{sys}) \text{ ps}$ compatible with world average.

Backup slides


Neural Network selection performance


Separate decay modes amplitude scans

B_s oscillation signal



Impact on the CKM unitarity triangle

B_s lifetime in $B_s^0 \rightarrow J/\psi \phi$

CDF made also a new average B_s lifetime measurement in $B_s^0 \rightarrow J/\psi\phi$ from a data sample of 1 fb⁻¹:

$\Lambda_{\rm b}$ lifetime measurements

$\Lambda_{\rm b}$ lifetime measurements			
CDF (ABE 96M)	1.320±0.150±0.070 ps		
ALEP (BARATE 98D)	1.210±0.110±0.000 ps		
OPAL (ACKER. 98G)	1.290 (+0.240-0.220) ±0.060 ps		
DLPH (ABREU 99W)	1.110 (+0.190-0.180) ±0.050 ps		
D0 (ABAZOV 05C)	1.220 (+0.220-0.180) ±0.040 ps		
D0 (D0 5179-Conf)	1.298±0.137±0.050 ps		
D0 (Run II Semilep)	1.280 (+0.120-0.110) ±0.090 ps		
CDF (hep-ex/0609021)	⊢← 1.593 (+0.083-0.078) ±0.033 ps		
CDF Run II Prelim.	1.580±0.077±0.012 ps		
World Average	1.230± <mark>0.07</mark> 4 ps		
0 0.5	1 1.5 2 2.5		
	Λ _b lifetime [ps]		