|V_{ub}| from QCD Sum Rules on the Light-Cone Patricia Ball

IPPP, Durham

FPCP07, 13 May 2007

Based on Ball/Zwicky, hep-ph/0406232; Ball, hep-ph/0611108.

Theory Input for Semileptonic Decays

Form factors:

$$\langle \pi(p) | \bar{u} \gamma_{\mu} (1 - \gamma_5) b | B(p+q) \rangle$$

$$= (q+2p)_{\mu} f_{+}(q^2) + \frac{m_B^2 - m_{\pi}^2}{q^2} q_{\mu} \left(f_0(q^2) - f_{+}(q^2) \right)$$

$$0 \le q^2 \le (m_B - m_\pi)^2 \qquad \longleftrightarrow \qquad m_\pi \le E_\pi \le \frac{1}{2m_B} \left(m_B^2 - m_\pi^2 \right)$$
$$0 \le q^2 \le 26.4 \,\text{GeV}^2 \qquad \longleftrightarrow \qquad 0.14 \,\text{GeV} \le E_\pi \le 2.6 \,\text{GeV}$$

Theoretical methods:

- lattice \rightarrow D. Becirevic's talk today
- SCET/dispersive constraints \rightarrow I. Stewart's talk Tue
- QCD sum rules on the light-cone \rightarrow this talk!

QCD Sum Rules on the Light-Cone

Basic quantity: correlation function:

$$i\int d^4y e^{iqy} \langle \pi(p) | T[\bar{u}\gamma_{\mu}b](y) [m_b \bar{b}i\gamma_5 d](0) | 0 \rangle \stackrel{\text{LCE}}{=} \sum_n T_H^{(n)} \otimes \phi_{\pi}^{(n)}$$

- $\phi_{\pi}^{(n)}$: π distribution amplitudes (DAs)
- $T_H^{(n)}$: perturbative amplitudes
- n: twist
- LCE: light-cone expansion

$$= 2p_{\mu}\left(f_{+}(q^{2})\frac{m_{B}^{2}f_{B}}{m_{B}^{2} - p_{B}^{2}} + \text{higher poles and cuts}\right) + \dots$$

B meson described by Euclidean current + plus analytical continuation

QCD Sum Rules on the Light-Cone

Features of LCSRs:

- terms in LCE ordered in powers of $1/m_b \rightarrow$ need to include higher-twist terms (n > 2)
- $\sum T_H^{(n)} \otimes \phi_{\pi}^{(n)}$ implies factorization valid at higher twist?
 - calculate $O(\alpha_s)$, known for

T2 (π (Khodjamirian et al. 97, Ball et al. 97), ρ (Ball/Braun 98))

T3 (π (Ball/Zwicky 2001))

 \rightarrow factorization OK

- use standard SR techniques: Borel-transformation, continuum model
 - $\, {\rm \bullet}\,$ introduce irreducible systematic uncertainty $\sim 10\%$

QCD Sum Rules on the Light-Cone

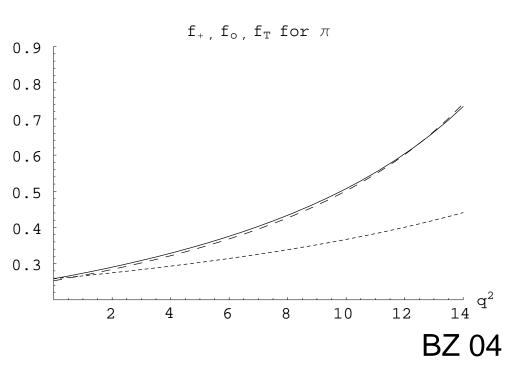
• Ball/Zwicky 04:

 $f_+(0) = 0.258 \pm 0.031$

- with theory input for leading-twist π distribution amplitude $\phi_{\pi;2}$
- Ball/Zwicky 05: constrain $\phi_{\pi;2}$ from experimental q^2 spectrum of $B \to \pi e \nu$:

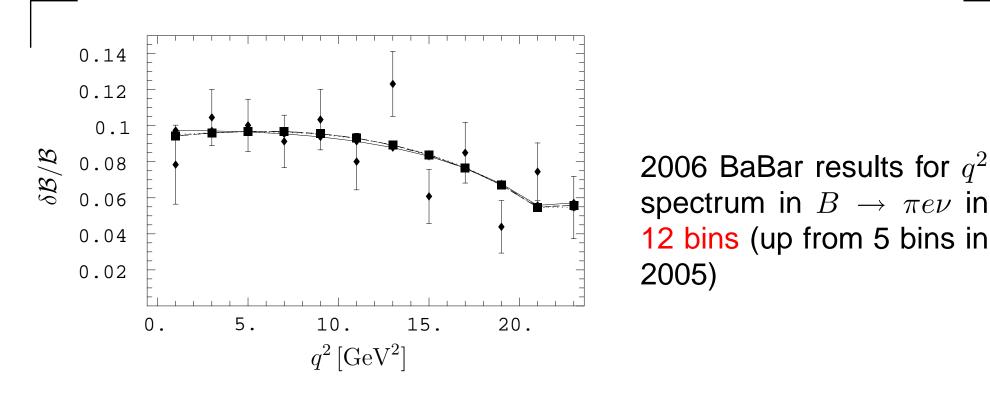
$$f_+(0) \approx 0.27$$
 and

$$|V_{ub}| = (3.2 \pm 0.4) \cdot 10^{-3}$$



Results for $B \rightarrow \rho e \nu$ also available — but less experimental <u>information</u>.

Theory Assisted by Experiment



Strategy: Parametrise form factor, fit to data, extract $|V_{ub}|f_+(0)$.

• Becirevic/Kaidalov (BK) :

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - q^{2}/m_{B^{*}}^{2}\right)\left(1 - \frac{\alpha_{\rm BK}}{\alpha_{\rm BK}} q^{2}/m_{B}^{2}\right)},$$

where α_{BK} determines the shape of f_+ and $f_+(0)$ the normalisation;

Becirevic/Kaidalov (BK)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - q^{2}/m_{B^{*}}^{2}\right)\left(1 - \frac{\alpha_{\rm BK}}{\alpha_{\rm BK}}q^{2}/m_{B}^{2}\right)},$$

where α_{BK} determines the shape of f_+ and $f_+(0)$ the normalisation;

Ball/Zwicky (BZ):

$$f_{+}(q^{2}) = f_{+}(0) \left(\frac{1}{1 - q^{2}/m_{B^{*}}^{2}} + \frac{rq^{2}/m_{B^{*}}^{2}}{\left(1 - q^{2}/m_{B^{*}}^{2}\right)\left(1 - \alpha_{\mathrm{BZ}} q^{2}/m_{B}^{2}\right)} \right),$$

with the two shape parameters α_{BZ} , r and the normalisation $f_+(0)$; BK is a variant of BZ with $\alpha_{BK} := \alpha_{BZ} = r$.

• the AFHNV parametrisation (Flynn et al.), based on an (n+1)-subtracted Omnes representation of f_+ :

$$f_{+}(q^{2}) \stackrel{n \ge 1}{=} \frac{1}{m_{B^{*}}^{2} - q^{2}} \prod_{i=0}^{n} \left[f_{+}(q_{i})^{2} (m_{B^{*}}^{2} - q_{i}^{2}) \right]^{\alpha_{i}(q^{2})},$$

with $\alpha_{i}(s) = \prod_{j=0, j \neq i}^{n} \frac{s - s_{j}}{s_{i} - s_{j}};$

the shape parameters are $f_+(q_i^2)/f_+(q_0^2)$ with $q_{0,...,n}^2$ the subtraction points; the normalisation is given by $f_+(0)$.

• the BGL parametrisation based on analyticity of
$$f_+$$
:

$$f_+(q^2) = \frac{1}{P(q^2)\phi(q^2, q_0^2)} \sum_{k=0}^{\infty} a_k (q_0^2) [z(q^2, q_0^2)]^k, \quad \sum_k a_k^2 \le 1,$$

$$z(q^2, q_0^2) = \frac{\{(m_B + m_\pi)^2 - q^2\}^{1/2} - \{(m_B + m_\pi)^2 - q_0^2\}^{1/2}}{\{(m_B + m_\pi)^2 - q^2\}^{1/2} + \{(m_B + m_\pi)^2 - q_0^2\}^{1/2}}$$

 q_0^2 : free parameter, determines maximum |z|; define

• BGLa :
$$q_0^2 = 20.1 \,\text{GeV}^2$$
, $|z| < 0.28$
• BGLb : $q_0^2 = 0$, $|z| < 0.52$

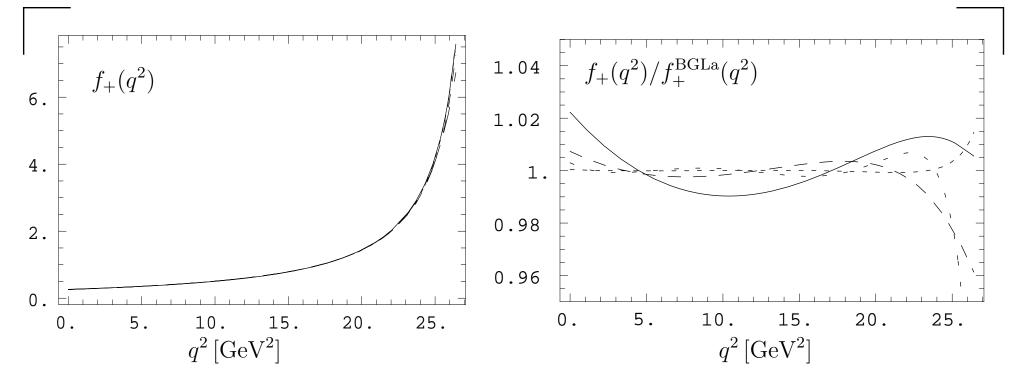
• systematic expansion in the small parameter *z*; truncate at k_{\max} ; choose $k_{\max} = 2$ for BGLa and $k_{\max} = 3$ for BGLb.

$|V_{ub}|f_+(0)$ from data

Param.	$ V_{ub} f_+(0)$	Remarks
BK	$(9.3 \pm 0.3 \pm 0.3) \times 10^{-4}$	$\chi^2_{\rm min} = 8.74/11 {\rm dof}$
		$\alpha_{\rm BK} = 0.53 \pm 0.06$
BZ	$(9.1 \pm 0.5 \pm 0.3) \times 10^{-4}$	$\chi^2_{\rm min} = 8.66/10 {\rm dof}$
		$\alpha_{\rm BZ} = 0.40^{+0.15}_{-0.22}, r = 0.64^{+0.14}_{-0.13}$
BGLa	$(9.1 \pm 0.6 \pm 0.3) \times 10^{-4}$	$\chi^2_{\rm min} = 8.64/10 {\rm dof}$
BGLb	$(9.1 \pm 0.6 \pm 0.3) \times 10^{-4}$	$\chi^2_{\rm min} = 8.64/9{\rm dof}$
AFHNV	$(9.1 \pm 0.3 \pm 0.3) \times 10^{-4}$	$\chi^2_{\rm min} = 8.64/8{\rm dof}$
SCET	$(8.0 \pm 0.4) \times 10^{-4}$	from $B^- \rightarrow \pi^- \pi^0$ (Arnesen et al.) (tree-level, no $1/m_b$ corrections)

All parametrisations agree – model-independent result!

Fitted Form Factor



Left panel: best-fit form factors f_+ as a function of q^2 . The line is an overlay of all five parametrisations.

Right panel: best-fit form factors normalised to BGLa. Solid line: BK, long dashes: BZ, short dashes: BGLb, short dashes with long spaces: AFHNV.

Results for $|V_{ub}|$

Procedure 1: take FF from theory calculation, fit to BK and extract $|V_{ub}|$ from experimental partial branching ratio $(q^2 \le 16 \,\text{GeV}^2 \text{ for LCSR}, q^2 \ge 16 \,\text{GeV}^2 \text{ for lattice})$

LCSR	$f_{+}(0) = 0.26 \pm 0.03, \alpha_{\rm BK} = 0.63^{+0.18}_{-0.21}$
	$ V_{ub} = (3.5 \pm 0.6(\text{th}) \pm 0.1(\text{exp})) \times 10^{-3}$
	$ V_{ub} f_+(0) = (9.0^{+0.7}_{-0.6} \pm 0.4) \times 10^{-4}$
HPQCD	$f_{+}(0) = 0.21 \pm 0.03, \alpha_{\rm BK} = 0.56^{+0.08}_{-0.11}$
	$ V_{ub} = (4.3 \pm 0.7 \pm 0.3) \times 10^{-3}$
	$ V_{ub} f_{+}(0) = (8.9^{+1.2}_{-0.9} \pm 0.4) \times 10^{-4}$
FNAL	$f_{+}(0) = 0.23 \pm 0.03, \alpha_{\rm BK} = 0.63^{+0.07}_{-0.10}$
	$ V_{ub} = (3.6 \pm 0.6 \pm 0.2) \times 10^{-3}$
	$ V_{ub} f_{+}(0) = (8.2^{+1.0}_{-0.8} \pm 0.3) \times 10^{-4}$

Results for $|V_{ub}|$

Procedure 2: take FF from theory, fit to experimentally determined shape, BGLa , obtain $f_+(0)$, extract $|V_{ub}|$ from full branching ratio.

LCSR	$f_+(0) = 0.26 \pm 0.03$
	$ V_{ub} = (3.5 \pm 0.4 (\text{shape}) \pm 0.1 (\mathcal{B})) \times 10^{-3}$
HPQCD	$f_+(0) = 0.21 \pm 0.03$
	$ V_{ub} = (4.3 \pm 0.5 \pm 0.1) \times 10^{-3}$
FNAL	$f_+(0) = 0.25 \pm 0.03$
	$ V_{ub} = (3.7 \pm 0.4 \pm 0.1) \times 10^{-3}$

- reduced theoretical uncertainty as shape of FF is fixed by experimental data
- reduced experimental uncertainty as total $\mathcal{B}(B \to \pi e \nu)$ can be used

Summary

- form factor calculations from QCD sum rules on the light-cone in mature shape, no scope for major improvement
- LCSR predictions for small and moderate $q^2 < 16 \,\mathrm{GeV}^2$ \longleftrightarrow LQCD predictions for large $q^2 > 16 \,\mathrm{GeV}^2$
- reduce error of $|V_{ub}|$ determination by fixing shape of form factor from experiment instead of theory data
- model-independent result: $|V_{ub}|f_+(0) = (9.1 \pm 0.7) \times 10^{-4}$
- both LCSR and FNAL prefer small $|V_{ub}| \sim 3.6 \times 10^{-3}$
- HPQCD points at larger $|V_{ub}| \sim 4.3 \times 10^{-3}$
- new analysis using Omnes relations, including also Belle/Cleo data and fitting to all LQCD data (Flynn/Nieves 07):

•
$$|V_{ub}| = (3.90 \pm 0.32(\text{stat}) \pm 0.18(\text{syst})) \times 10^{-3}$$
 and $|V_{ub}|f_{+}(0) = (8.8 \pm 0.8) \times 10^{-4}$