Inclusive Semileptonic B Decays
 Theoretical Tools and Uncertainties

Matthias Neubert
J ohannes Gutenberg University Mainz

FHEP

Inclusive $B \rightarrow X_{c} \downarrow \vee$ Decay:

Kobayashi-Maskawa matrix

Laboratory for m_{b} \& heaky-quark parameters

- Optical theorem:

- Model-independent predictions!

Theoretical tool: OPE

- Hadronic physics encoded in few parameters (forward B-meson matrix elements of local operators):

$$
\mathrm{m}_{\mathrm{Q}}, \mu_{\pi}{ }^{2}, \mu_{\mathrm{G}}{ }^{2}, \rho_{\mathrm{D}}{ }^{3}, \ldots \text { (or: } \bar{\Lambda}, \lambda_{1}, \lambda_{2} \ldots \text {) }
$$

- Only assumption: quark-hadron duality (believed to be reliable for $\Delta E=M_{B}-M_{D}$)

Global moment fit

- $\left|\mathrm{V}_{\mathrm{cb}}\right|, \mathrm{m}_{\mathrm{Q}}, \mu_{\pi}{ }^{2}, \mu_{\mathrm{G}}{ }^{2}$ extracted from combined analysis of different decay spectra:
- $B \rightarrow X_{C} l v$ lepton energy moments
- $B \rightarrow X_{C} l v$ hadronic mass moments
- $B \rightarrow X_{s} \gamma$ photon energy moments (problematic!)
- Data from BaBar, Belle, CLEO, CDF, DELPHI
- Measurements highly correlated
[Bauer, Ligeti, Luke, Manohar, +Trott (2002,2004); Battaglia et al. (2002);
Bigi, Uraltsev (2003); Gambino, Uraltsev (2004)]

Status of theory

- Leading term at $O\left(\alpha_{s}, \alpha_{s}{ }^{2} \beta_{0}\right)$, but not $O\left(\alpha_{s}{ }^{2}\right)$
- Power corrections at tree level
- Technology exists for two-loop calculation of decay spectra
[Anastasiou, Melnikov, Petriello (2005)]
\rightarrow work in progress by several groups (also for one-Ioop corrections to $\mu_{\pi}{ }^{2}$ and $\mu_{\mathrm{G}}{ }^{2}$ terms)
\rightarrow important!

Fit strategy

Experimental data incl. errors \& correlations
fit to set of equations

Fit strategy

Experimental data incl. errors \& correlations

fit to set of equations

Fit strategy

- Without truncation of perturbation theory, any path to a given scheme would lead to same result, e.g.:
[Fit in kinetic scheme]
=
[Fit in 15 scheme] \oplus [Translation: $15 \rightarrow$ kin.]
- In practice, results differ at finite order in α_{s}
- Presently quoted theory errors do not take this into account \rightarrow too optimistic!

Fit results

Source (Scheme)	Measurements
Battaglia et al. (Kinetic) [274]	$\begin{aligned} & \hline\left\|V_{c b \mid}\right\|=\left(41.9 \pm 0.7_{\text {meas }} \pm 0.6_{\text {fit }} \pm 0.4_{\text {pert }}\right) \times 10^{-3} \\ & m_{b}^{\text {kin }}=4.59 \pm 0.08_{\text {fit }} \pm 0.01_{\text {syst. }} \mathrm{GeV} / \mathrm{c}^{2} \\ & \hline \end{aligned}$
Battaglia et al. (Pole) [274]	$\begin{aligned} & \left\|V_{\text {cb }}\right\|=\left(41.3 \pm 0.7_{\text {meas }} \pm 0.7_{\text {fit }} \pm 0.2_{n l} \pm 0.9_{\text {pert }}\right) \times 10^{-3} \\ & \Lambda=0.40 \pm 0.10_{\text {fit }} \pm 0.02_{\text {syst. }} \mathrm{GeV} / \mathrm{c}^{2} \\ & \hline \end{aligned}$
CLEO (Pole) [275] (1S)	$\begin{aligned} & \left\|V_{\text {cb }}\right\|=\left(40.8 \pm 0.5_{\Gamma_{\text {sL }}} \pm 0.4_{\lambda_{1}, \bar{\Lambda}} \pm 0.9_{\text {theory }}\right) \times 10^{-3} \\ & \bar{\Lambda}=0.39 \pm 0.03_{\text {stat }} \pm 0.06_{s_{y s t}} \pm 0.12_{\text {theory }} \mathrm{GeV} / \mathrm{c}^{2} \\ & m_{b}^{1 \mathrm{~S}}=4.82 \pm 0.07_{\text {exp }} \pm 0.11_{\text {theory }} \mathrm{GeV} / \mathrm{c}^{2} \\ & \hline \end{aligned}$
BABAR (Kinetic) [276]	$\begin{aligned} & \left\|V_{\text {cb }}\right\|=\left(41.4 \pm 0.4_{\text {exp }} \pm 0.4_{H Q E} \pm 0.6_{\text {theory }}\right) \times 10^{-3} \\ & m_{b}^{\text {kin }}=4.61 \pm 0.05_{\text {exp }} \pm 0.04_{H Q E} \pm 0.02_{\text {theory }} \mathrm{GeV} / \mathrm{c}^{2} \end{aligned}$
Bauer et al. (1S) [277]	$\begin{aligned} & \left\|V_{c b}\right\|=\left(41.4 \pm 0.6 \pm 0.1_{\tau_{B}}\right) \times 10^{-3} \\ & m_{b}^{1 \mathrm{~S}}=4.68 \pm 0.03 \mathrm{GeV} / \mathrm{c}^{2} \end{aligned}$
Buchmüller \& Flächer (Kinetic) [261]	$\begin{aligned} & \left\|V_{c b}\right\|=\left(41.96 \pm 0.23_{\exp } \pm 0.35_{H Q E} \pm 0.59_{\Gamma_{\text {SL }}}\right) \times 10^{-3} \\ & m_{b}^{\text {kin }}=4.59 \pm 0.025_{\exp } \pm 0.030_{H Q E} \mathrm{GeV} / \mathrm{c}^{2} \end{aligned}$
Belle (Kinetic) [278]	
Belle (1S) [278]	$\begin{aligned} & \left\|V_{c b}\right\|=\left(41.5 \pm 0.5_{\text {fit }} \pm 0.22_{\tau_{B}}\right) \times 10^{-3} \\ & m_{b}^{15}=4.73 \pm 0.05 \mathrm{GeV} / \mathrm{c}^{2} \\ & \hline \end{aligned}$

2007 HFAG fit (prelim.)

[\rightarrow thanks to Phillip Urquijo]

$$
\begin{aligned}
\left|\mathrm{V}_{\mathrm{cb}}\right| & =\left(41.78 \pm 0.36_{\mathrm{fit}} \pm 0.08_{\mathrm{rB}}\right) \cdot 10^{-3} \\
\mathrm{~m}_{\mathrm{b}}^{1 S} & =(4.701 \pm 0.030) \mathrm{GeV}
\end{aligned}
$$

Perturbative error on | $\mathrm{V}_{\mathrm{cb}} \mid$

- Moments insensitive to normalization of decay rate
- $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ corrections to $\Gamma\left(B \rightarrow X_{c} \mid v\right)$ still unknown (calculation in progress)
- Look at similar processes:
$-\Gamma\left(B \rightarrow X_{u} l v\right): 1-0.77 \alpha_{s}-\left(2.50_{\text {BLM }}-0.34\right) \alpha_{s}^{2}+.$. [van Ritbergen (1999)]
$-\Gamma(\tau \rightarrow X v): 1+0.32 \alpha_{s}+0.53 \alpha_{s}{ }^{2}+0.85 \alpha_{s}^{3}+\ldots$ (BLM approximation to 3rd-order term poor)

Important: expansion is never in powers of $\left(\alpha_{s} / 4 \pi\right)$!

Perturbative error on $\left|\mathrm{V}_{\mathrm{cb}}\right|$

- With $\mu=m_{b} / 2$:

$$
0.34 \alpha_{s}^{2}=0.028 \quad 0.85 \alpha_{s}^{3}=0.020
$$

- Add in quadrature and take $1 / 2$ to estimate perturbative error on $\left|\mathrm{V}_{\mathrm{cb}}\right|$:

$$
\delta\left|\mathrm{V}_{\mathrm{cb}}\right|_{\text {pert }}= \pm 0.72 \cdot 10^{-3}(1.7 \%
$$

\rightarrow twice as large as quoted total theory error!
Important: when $\mathrm{O}\left(\beta_{0} \alpha_{\mathrm{s}}{ }^{2}\right)$ terms are included, scale variation cannot be used to estimate unknown higher-order terms!

Perturbative error on m_{b}

- Conversion to mass definition scheme introduces irreducible theory uncertainty
- (Gu)estimates: $\delta \mathrm{m}_{\mathrm{b}} \sim 100 \mathrm{MeV}$ (order α_{s}) $\delta m_{b} \sim 60 \mathrm{MeV}\left(\right.$ order $\left.\beta_{0} \alpha_{\mathrm{s}}{ }^{2}\right) \underset{\text { present }}{\stackrel{-}{4}}$ $\delta m_{b} \sim 30 \mathrm{MeV}\left(\right.$ order $\left.\alpha_{\mathrm{s}}{ }^{2}\right)$
(Note: Values for m_{b}^{15} obtained by different groups differ by 110 MeV !)
- Result:

$$
\delta m_{\mathrm{b}, \text { pert }}= \pm 60 \mathrm{MeV}(1.3 \%
$$

\rightarrow twice as large as quoted total theory error!
\rightarrow very important for $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determination!

$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma$ photon energy moments

- Inclusion in global OPE fit problematic due to sensitivity to very low scales
- Cut $\mathrm{E}_{\gamma}>\mathrm{E}_{0}$ introduces $\Delta=\mathrm{m}_{\mathrm{b}}-2 \mathrm{E}_{0} \approx 1 \mathrm{GeV}$ much below m_{b}
- Theoretical treatment requires multi-scale OPE:
[M.N. (2004)]

$$
\begin{aligned}
& \Gamma \sim \mathrm{H}\left(\mu_{\mathrm{h}}\right)^{*} \mathrm{U}\left(\mu_{\mathrm{h}}, \mu_{\mathrm{i}}\right)^{*} \mathrm{~J}\left(\mu_{\mathrm{i}}\right)^{*} \mathrm{U}\left(\mu_{\mathrm{i}}, \mu_{0}\right)^{*} M\left(\mu_{0}\right) \\
& \text { QCD } \rightarrow \text { SCET } \rightarrow \text { RG evolution } \rightarrow \text { HQET } \rightarrow \text { RG evolution } \rightarrow \text { Local OPE } \\
& \begin{array}{l}
\mu_{h_{n}} \sim m_{b} \\
\mu_{\mathrm{i}} \sim \sqrt{m_{b} \Delta}
\end{array} \\
& \text { Perturbation theory }
\end{aligned}
$$

$B \rightarrow X_{s} \gamma$ photon energy moments

- Only complete NNLO calculation ($\sim \alpha_{\mathrm{s}}{ }^{2}$) available [M.N. (2005)]
- Results (Belle data): $m_{b}{ }^{5 F}=(4.622 \pm 0.099 \pm 0.030) \mathrm{GeV}$ $\mu_{\pi}{ }^{2, S F}=(0.108 \pm 0.186 \pm 0.077) \mathrm{GeV}^{2}$ $m_{b}^{\text {kin }}=(4.534 \pm 0.114 \pm 0.041) \mathrm{GeV}$
$\mu_{\pi}^{2, \mathrm{kin}}=(0.495 \pm 0.176 \pm 0.085) \mathrm{GeV}^{2}$
\rightarrow very small theory errors, but not used by HFAG

Inclusive $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}}$ lv Decay:

Theoretical tool: LC expansion

[M.N. (1993); Bigi et al. (1993)]

- Expansion in light-cone operators:

- Hadronic physics encoded in nonperturbative shape functions (generalized PDFs)

Factorization

- Factorization formula:

$$
\mathrm{d} \Gamma(\mathrm{~B} \rightarrow \text { light })=\underset{\lambda}{\mathrm{H}} \mathrm{~J} \otimes \mathrm{~S}
$$

hard and jet functions (perturbative)

- Shape functions are universal, process independent

Strategy

- Extract shape function from $B \rightarrow X_{s} \gamma$ photon spectrum, then predict arbitrary $B \rightarrow X_{\mathrm{u}} l v$ decay distributions
[Bosch, Lange, M.N., Paz $(2004,2005)$]
- Functional form constrained moment relations (also for subleading SFs)
- Knowledge of m_{b} and μ_{π}^{2} helps, but does not eliminate uncertainties

Elimination of charm

- Hadronic phase space is most transparent in variables $P_{+}=E_{X}-P_{x}$ and $P_{-}=E_{x}+P_{x}$
- $P_{+}<P_{-}$for most cuts eliminating charm background
- Collinear kinematics

shape function region

Elimination of charm

- Cut on hadronic invariant mass: $M_{x}{ }^{2}<M_{D}{ }^{2}$

Elimination of charm

- Cut on hadronic invariant mass: $M_{x}{ }^{2}<M_{D}{ }^{2}$
- Cut on hadronic $P_{+}<M_{D}{ }^{2} / M_{B}$ or lepton $\mathrm{E}_{\mathrm{l}}>\left(\mathrm{M}_{B}{ }^{2}-M_{D}{ }^{2}\right) / 2 M_{B}$

shape function region

- Cut on hadronic invariant mass: $M_{x}{ }^{2}<M_{D}{ }^{2}$
- Cut on hadronic $P_{+}<M_{D}{ }^{2} / M_{B}$ or lepton $\mathrm{E}_{l}>\left(M_{B}{ }^{2}-M_{D}{ }^{2}\right) / 2 M_{B}$
- Cut on leptonic invariant mass $q^{2}>\left(M_{B}-M_{D}\right)^{2}$

shape function region

Status of theory (BLNP)

- Leading term at $O\left(\alpha_{s}\right)$, partial results at $O\left(\alpha_{s}{ }^{2}\right)$
[M.N. (2004); Becher, M.N. $(2005,2006)$]
- Large Sudakov logarithms resummed to all orders in perturbation theory (at NLO)
- Subleading shape functions included at tree level $\rightarrow 1 / m_{\mathrm{b}}$ terms integrate to zero in inclusive rates [Lee, Stewart (2004); Bosch, M.N., Paz (2004); Beneke et al. (2005)]
- Kinematical power corrections included at $\mathrm{O}\left(\alpha_{s}\right)$
- Residual $\mu_{\pi, \mathrm{G}}{ }^{2} / m_{0}{ }^{2}$ corrections included at tree level
- Sensitivity to mb and heavy-quark parameters only via shape-function moments!

Status of theory (BLNP)

- Error budget:
- perturbative uncertainty estimated by scale variation (three scales)
- power corrections estimated by sampling over 729 different sets of subleading shape functions
- weak annihilation ($\pm 1.8 \%$ on total rate)
- Sensitivity to leading shape function is treated as an experimental error!

Predictions for various cuts

	$m_{b}[\mathrm{GeV}]$	4.50	4.55	4.60	4.65	4.70
	Theory Error					
$M_{X} \leq M_{D}$	a	9.5	8.8	8.2	7.7	7.3
Eff $=84 \%$	Functional Form	1.4%	1.1%	0.8%	0.5%	0.4%
$M_{X} \leq 1.7 \mathrm{GeV}$	a	12.5	11.5	10.5	9.7	8.9
Eff $=75 \%$	Functional Form	2.9%	2.6%	2.2%	1.9%	1.6%
$M_{X} \leq 1.7 \mathrm{GeV}$	a	10.3	9.8	9.3	9.0	8.7
$q^{2} \geq 8 \mathrm{GeV}^{2} 35 \%$	Functional Form	2.0%	1.7%	1.5%	1.4%	1.4%
$q^{2} \geq\left(M_{B}-M_{D}\right)^{2}$	a	11.4	11.1	10.9	10.8	10.6
Eff $=18 \%$	Functional Form	5.0%	4.4%	4.0%	3.6%	3.2%
$P_{+} \leq M_{D}^{2} / M_{B}$	a	16.7	15.0	13.6	12.2	11.1
Eff $=65 \%$	Functional Form	5.3%	4.8%	4.4%	4.0%	3.6%
$E_{l} \geq 2.2 \mathrm{GeV}$	a	22.6	21.0	19.7	18.5	17.4
Eff $=11 \%$	Functional Form	16.2%	13.1%	11.0%	9.3%	7.9%

Rate $\Gamma \sim\left(m_{b}\right)^{a}$

Results for various cuts [HAA (2007)]

	accepted region	f_{u}	$\left\|V_{u b}\right\|\left[10^{-3}\right]$
CLEO [313]	$E_{e}>2.1 \mathrm{GeV}$	0.13	$4.09 \pm 0.48 \pm 0.37$
BELLE [316]	$E_{e}>1.9 \mathrm{GeV}$	0.24	$4.82 \pm 0.45 \pm 0.30$
BABAR [315]	$E_{e}>2.0 \mathrm{GeV}$	0.19	$4.39 \pm 0.25 \pm 0.32$
BABAR [314]	$E_{e}>2.0 \mathrm{GeV}, s_{\mathrm{h}}^{\max }<3.5 \mathrm{GeV}^{2}$	0.13	$4.57 \pm 0.31 \pm 0.42$
BELLE [309]	$M_{X}<1.7 \mathrm{GeV} / c^{2}$	0.47	$4.06 \pm 0.27 \pm 0.24$
BELLE [318]	$M_{X}<1.7 \mathrm{GeV} / c^{2}, q^{2}>8 \mathrm{GeV}^{2} / c^{2}$	0.24	$4.37 \pm 0.46 \pm 0.29$
BABAR [317]	$M_{X}<1.7 \mathrm{GeV} / c^{2}, q^{2}>8 \mathrm{GeV}^{2} / c^{2}$	0.24	$4.75 \pm 0.35 \pm 0.31$
Average	$\chi^{2}=\mathbf{6 / 6}, \mathrm{CL}=\mathbf{0 . 4 1}$		$\mathbf{4 . 5 2} \pm \mathbf{0 . 1 9} \pm \mathbf{0 . 2 7}$
BELLE $(?)$	$P_{+}<0.66 \mathrm{GeV}$	0.57	$4.14 \pm 0.35 \pm 0.29$

- Measurements with higher efficiency give lower | V_{ub} |!
- Small shape-function uncertainty (in exp. error) due to overly optimistic use of moment relations!

Experimental error includes uncertainty in leading shape function, which is fully correlated between different cuts \rightarrow Cannot possibly be that small!			
erage	6/6, CL= 0.41	$4.52 \pm 0.19) \pm 0.27$	
BELLE (?)	$P_{+}<0.66 \mathrm{GeV}$		$4.14 \pm 0.35 \pm$

- Measurements with higher efficiency give lower $\left|\mathrm{V}_{\mathrm{ub}}\right|$!
- Small shape-function uncertainty (in exp. error) due to overly optimistic use of moment relations!

Alternative schemes

- Dressed Gluon Exponentiation (DGE):
- renormalon-inspired model for the leading shape function (parameter m_{b})
- no attempt to include subleading shape functions or other power corrections
- less flexible functional form
\rightarrow numerical results similar to BLNP fits

Alternative schemes

- Combined $M_{x}-q^{2}$ cut using OPE (BLL):
[Bauer, Ligeti, Luke $(2000,2001)$]
- cutting on leptonic invariant mass in part eliminates shape-function region
- Iow efficiency and enhanced sensitivity to weak annihilation
- OPE approach reintroduces sensitivity to b-quark mass ($10^{\text {th }}$ power!)
- Gives largest | $\mathrm{V}_{\mathrm{ub}} \mid$ by far $\left(\sim 5.0 \cdot 10^{-3}\right)$!

Shape-function free relations

- At leading power (only), possible to construct shape-function free relations between weighted spectra, e.g.:
with:

$$
\begin{aligned}
& \widehat{\Gamma}_{u}\left(E_{0}\right) \equiv \int_{E_{0}}^{\infty} \mathrm{d} E_{\ell} \frac{\mathrm{d} \Gamma\left(B \rightarrow X_{u} \ell \bar{\nu}\right)}{\mathrm{d} E_{\ell}} \\
& \widehat{\Gamma}_{s}\left(E_{0}\right) \equiv \frac{2}{m_{B}} \int_{E_{0}}^{\infty} \mathrm{d} E_{\gamma}\left(E_{\gamma}-E_{0}\right) \frac{\mathrm{d} \Gamma\left(B \rightarrow X_{s} \gamma\right)}{\mathrm{d} E_{\gamma}}
\end{aligned}
$$

Shape-function free relations

- Refinements:
- resummation of subleading logs (but introducing Landau pole!) and extension to hadronic mass distribution [Leibovich, Low, Rothstein $(1999,2000)]$
- inclusion of NLO QCD corrections [M.N. (2001)]
- generalization to arbitrary cuts, inclusion of subleading shape functions and higher power corrections, removal of Landau pole singularity, ...
\rightarrow first systematic error estimates!
[Lange, M.N., Paz (2005); Lange (2005)]

Shape-function free relations

- Example:

$$
\Gamma_{u}(\Delta)=\underbrace{\int_{0}^{\Delta} d P_{+} \frac{d \Gamma_{u}}{d P_{+}}}_{\text {exp. input }}=\left|V_{u b}\right|^{2} \int_{0}^{\Delta} d P_{+} \underbrace{W\left(\Delta, P_{+}\right)}_{\text {theory }} \underbrace{\frac{1}{\Gamma_{s}\left(E_{*}\right)} \frac{d \Gamma_{s}}{d P_{+}}}_{\text {exp. input }}
$$

- weight function perturbatively calculable; leading $\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ terms included!
- hadronic uncertainties enter at $O\left(1 / m_{b}\right)$
- error analysis like in BLNP

Shape-function free relations

- BaBar analysis of lepton spectrum:

- good lesson on treatment of theory errors in exp. analyses
- only BLNP includes power corrections and complete error analysis
- errors must blow up at large E_{0} !

Result: $\left|\mathrm{V}_{\mathrm{ub}}\right|=\left(4.40 \pm 0.30 \pm 0.41_{\mathrm{th}} \pm 0.23\right) \cdot 10^{-3}$

Summary

- $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}} \mathrm{lv}$ decays:

$$
\begin{aligned}
& \delta\left|\mathrm{V}_{\mathrm{cb}}\right|_{\mathrm{th}}= \pm 0.8 \cdot 10^{-3} \quad(2 \%) \\
& \delta \mathrm{m}_{\mathrm{b}, \mathrm{th}}= \pm 70 \mathrm{MeV} \quad(1.5 \%)
\end{aligned}
$$

- $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathrm{l} v$ decays:
$\delta\left|\mathrm{V}_{\mathrm{ub}}\right|_{\mathrm{th}} \geq \pm 0.3 \cdot 10^{-3}(7 \%)$ depending on cut
\rightarrow best determinations (highest efficiency, best theoretical control) yield:

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|=\left(4.10 \pm 0.30_{\exp }(?) \pm 0.29_{\mathrm{th}}\right) \cdot 10^{-3}
$$

Consistent with recent exclusive values! \rightarrow talk by P. Ball

Summary

- General remarks:
- makes no sense to average theory approaches referring to different approximations (LO vs. NLO, inclusion of power corrections, etc.)
- makes no sense to quote small theory errors from approaches that do not include error analysis
- Closer interaction with theorists required in HFAG (should revive V_{xb} workshops)!

