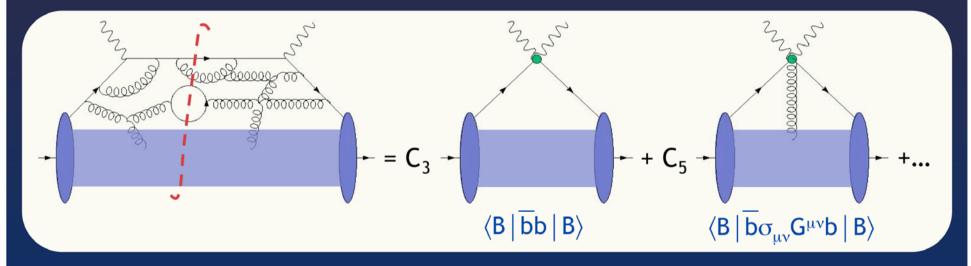


Inclusive Semileptonic B Decays Theoretical Tools and Uncertainties

Matthias Neubert Johannes Gutenberg University Mainz

May 13, 2007

FPCP 2007, Bled, Slovenia


Inclusive $B \rightarrow X_c lv$ Decay: $|V_{cb}|$ Laboratory for m_b & heavy-quark parameters

nitarity triangle

Theoretical tool: OPE

• Optical theorem:

• Model-independent predictions!

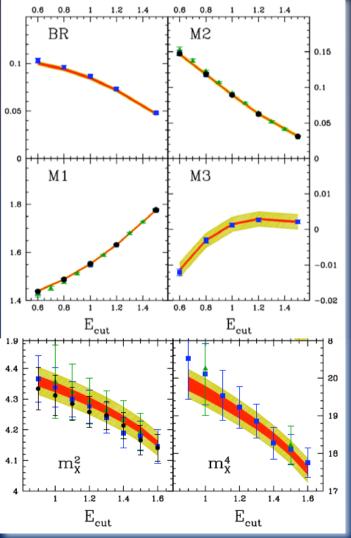
GUTENAL GUTENAL COMANNERS

Theoretical tool: OPE

 γ, Z

 Hadronic physics encoded in few parameters (forward B-meson matrix elements of local operators):

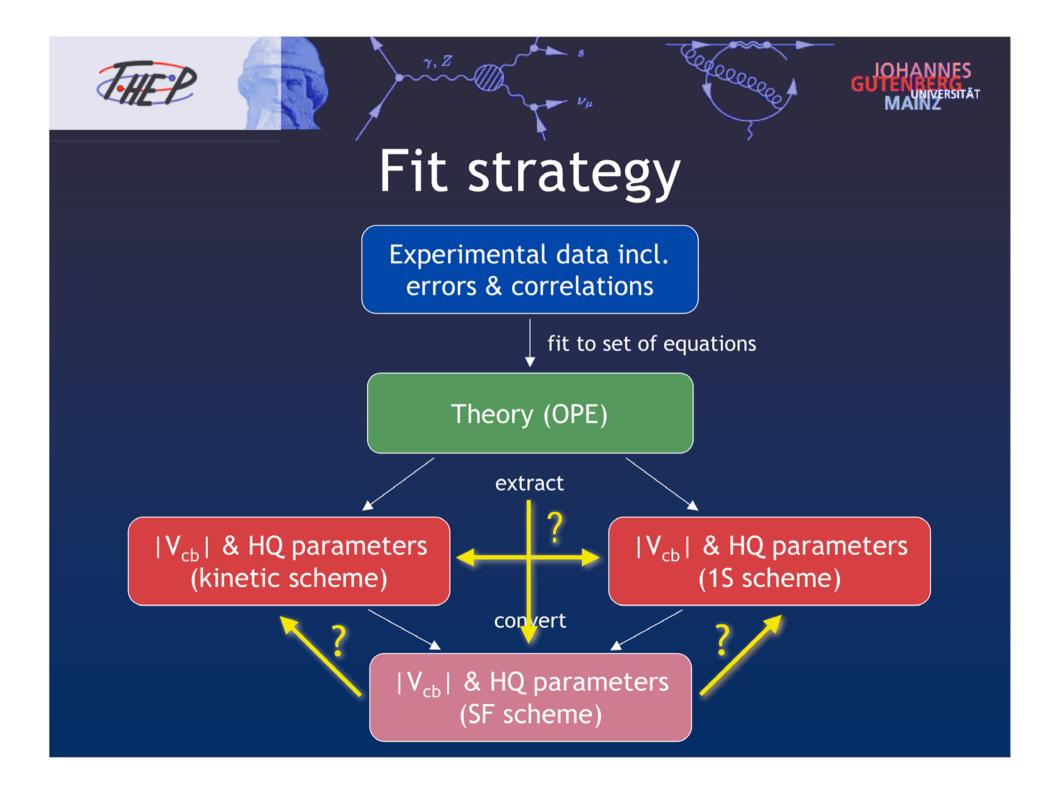
$$m_Q, \ \mu_{\pi}^2, \ \mu_G^2, \ \rho_D^3, \ ... \ (or: \ \overline{\Lambda}, \ \lambda_1, \ \lambda_2 \ ...)$$


• Only assumption: quark-hadron duality (believed to be reliable for $\Delta E = M_B - M_D$)

Global moment fit

- $|V_{cb}|$, m_Q , μ_{π}^2 , μ_G^2 extracted from combined analysis of different decay spectra:
 - $B \rightarrow X_c l v$ lepton energy moments
 - $B \rightarrow X_c lv$ hadronic mass moments
 - $B \rightarrow X_{s\gamma}$ photon energy moments (problematic!)
- Data from BaBar, Belle, CLEO, CDF, DELPHI
- Measurements highly correlated

[Bauer, Ligeti, Luke, Manohar, +Trott (2002,2004); Battaglia et al. (2002); Bigi, Uraltsev (2003); Gambino, Uraltsev (2004)]



Status of theory

deeeeee

- Leading term at $O(\alpha_s, \alpha_s^2\beta_0)$, but not $O(\alpha_s^2)$
- Power corrections at tree level
- Technology exists for two-loop calculation of decay spectra [Anastasiou, Melnikov, Petriello (2005)]
- → work in progress by several groups (also for one-loop corrections to μ_π² and μ_G² terms)
 → important!

Fit strategy

 γ, Z

Leeeeee

• Without truncation of perturbation theory, any path to a given scheme would lead to same result, e.g.:

[Fit in kinetic scheme]

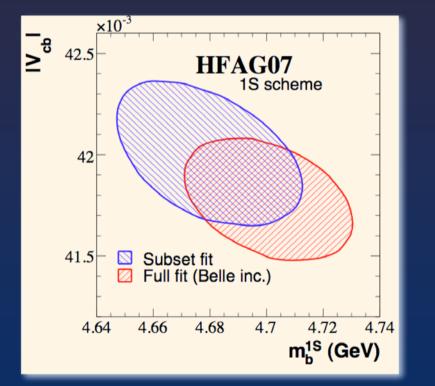
[Fit in 1S scheme] \oplus [Translation: 1S \rightarrow kin.]

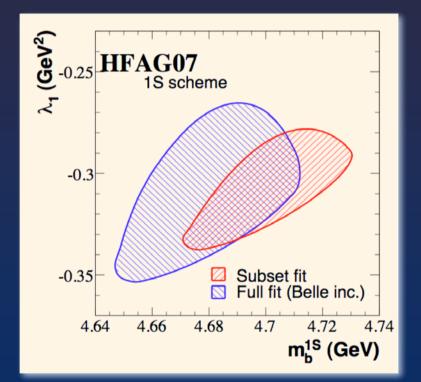
- In practice, results differ at finite order in α_s
- Presently quoted theory errors do not take this into account → too optimistic!

Ecqueeeeee

Fit results

 ν_{μ}


 γ, Z


$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Source (Scheme)	Measurements
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	Battaglia <i>et al.</i> (Kinetic) [274]	$ V_{cb} = (41.9 \pm 0.7_{meas} \pm 0.6_{fit} \pm 0.4_{pert}) \times 10^{-3}$
$\begin{split} \overline{\Lambda} &= 0.40 \pm 0.10_{fit} \pm 0.02_{syst.} \text{ GeV/c}^2 \\ \hline \text{CLEO (Pole) [275]} & V_{cb} = (40.8 \pm 0.5_{\Gamma_{\text{SL}}} \pm 0.4_{\lambda_1,\overline{\Lambda}} \pm 0.9_{theory}) \times 10^{-3} \\ \overline{\Lambda} &= 0.39 \pm 0.03_{stat} \pm 0.06_{syst.} \pm 0.12_{theory} \text{ GeV/c}^2 \\ \hline \text{(1S)} & m_b^{18} = 4.82 \pm 0.07_{exp} \pm 0.11_{theory} \text{ GeV/c}^2 \\ \hline \text{BABAR (Kinetic) [276]} & V_{cb} = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{theory}) \times 10^{-3} \\ m_b^{\text{kin}} = 4.61 \pm 0.05_{exp} \pm 0.04_{HQE} \pm 0.02_{theory} \text{ GeV/c}^2 \\ \hline \text{Bauer et al. (1S) [277]} & V_{cb} = (41.4 \pm 0.6 \pm 0.1_{\tau_B}) \times 10^{-3} \\ m_b^{18} = 4.68 \pm 0.03 \text{ GeV/c}^2 \\ \hline \text{Buchmüller \& Flächer (Kinetic) [261]} & V_{cb} = (41.96 \pm 0.23_{exp} \pm 0.35_{HQE} \pm 0.59_{\Gamma_{\text{SL}}}) \times 10^{-3} \\ m_b^{\text{kin}} = 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} \text{ GeV/c}^2 \\ \hline \text{Belle (Kinetic) [278]} & V_{cb} = (41.93 \pm 0.65_{fit} \pm 0.48_{\alpha_s} \pm 0.68_{theory}) \times 10^{-3} \\ m_b^{\text{kin}} = 4.564 \pm 0.076 \text{ GeV/c}^2 \\ \hline \end{array}$		$m_b^{\rm kin} = 4.59 \pm 0.08_{fit} \pm 0.01_{syst.} {\rm GeV/c^2}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Battaglia et al. (Pole) [274]	$ V_{cb} = (41.3 \pm 0.7_{meas} \pm 0.7_{fit} \pm 0.2_{nl} \pm 0.9_{pert}) \times 10^{-3}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\overline{\Lambda} = 0.40 \pm 0.10_{fit} \pm 0.02_{syst.} \mathrm{GeV/c^2}$
$\begin{array}{c c} (1S) & m_b^{1S} = 4.82 \pm 0.07_{exp} \pm 0.11_{theory} \text{GeV/c}^2 \\ \hline \text{BABAR (Kinetic) [276]} & V_{cb} = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{theory}) \times 10^{-3} \\ m_b^{kin} = 4.61 \pm 0.05_{exp} \pm 0.04_{HQE} \pm 0.02_{theory} \text{GeV/c}^2 \\ \hline \text{Bauer et al. (1S) [277]} & V_{cb} = (41.4 \pm 0.6 \pm 0.1_{\tau_B}) \times 10^{-3} \\ m_b^{1S} = 4.68 \pm 0.03 \text{GeV/c}^2 \\ \hline \text{Buchmüller \& Flächer (Kinetic) [261]} & V_{cb} = (41.96 \pm 0.23_{exp} \pm 0.35_{HQE} \pm 0.59_{\Gamma_{SL}}) \times 10^{-3} \\ m_b^{kin} = 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} \text{GeV/c}^2 \\ \hline \text{Belle (Kinetic) [278]} & V_{cb} = (41.93 \pm 0.65_{fit} \pm 0.48_{\alpha_s} \pm 0.68_{theory}) \times 10^{-3} \\ m_b^{kin} = 4.564 \pm 0.076 \text{GeV/c}^2 \\ \hline \end{array}$	CLEO (Pole) [275]	$ V_{cb} = (40.8 \pm 0.5_{\Gamma_{SL}} \pm 0.4_{\lambda_1,\overline{\Lambda}} \pm 0.9_{theory}) \times 10^{-3}$
BABAR (Kinetic) [276] $ V_{cb} = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{theory}) \times 10^{-3}$ $m_b^{kin} = 4.61 \pm 0.05_{exp} \pm 0.04_{HQE} \pm 0.02_{theory} \text{ GeV/c}^2$ Bauer et al. (1S) [277] $ V_{cb} = (41.4 \pm 0.6 \pm 0.1_{\tau B}) \times 10^{-3}$ $m_b^{1S} = 4.68 \pm 0.03 \text{ GeV/c}^2$ Buchmüller & Flächer (Kinetic) [261] $ V_{cb} = (41.96 \pm 0.23_{exp} \pm 0.35_{HQE} \pm 0.59_{\Gamma_{SL}}) \times 10^{-3}$ $m_b^{kin} = 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} \text{ GeV/c}^2$ Belle (Kinetic) [278] $ V_{cb} = (41.93 \pm 0.65_{fit} \pm 0.48_{\alpha_s} \pm 0.68_{theory}) \times 10^{-3}$ $m_b^{kin} = 4.564 \pm 0.076 \text{ GeV/c}^2$		$\overline{\Lambda} = 0.39 \pm 0.03_{stat} \pm 0.06_{syst.} \pm 0.12_{theory} \text{GeV/c}^2$
$\begin{split} m_b^{\rm kin} &= 4.61 \pm 0.05_{exp} \pm 0.04_{HQE} \pm 0.02_{theory} {\rm GeV/c^2} \\ \hline {\rm Bauer \ et \ al. \ (1S) \ [277]} & V_{cb} &= (41.4 \pm 0.6 \pm 0.1_{\tau_B}) \times 10^{-3} \\ m_b^{\rm 1S} &= 4.68 \pm 0.03 {\rm GeV/c^2} \\ \hline {\rm Buchmüller \ \& \ Flächer \ (Kinetic) \ [261]} & V_{cb} &= (41.96 \pm 0.23_{exp} \pm 0.35_{HQE} \pm 0.59_{\Gamma_{\rm SL}}) \times 10^{-3} \\ m_b^{\rm kin} &= 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} {\rm GeV/c^2} \\ \hline {\rm Belle \ (Kinetic) \ [278]} & V_{cb} &= (41.93 \pm 0.65_{fit} \pm 0.48_{\alpha_s} \pm 0.68_{theory}) \times 10^{-3} \\ m_b^{\rm kin} &= 4.564 \pm 0.076 {\rm GeV/c^2} \\ \hline \end{array}$	(1S)	$m_b^{1S} = 4.82 \pm 0.07_{exp} \pm 0.11_{theory} \text{GeV/c}^2$
Bauer et al. (1S) [277] $ V_{cb} = (41.4 \pm 0.6 \pm 0.1_{\tau_B}) \times 10^{-3}$ $m_b^{1S} = 4.68 \pm 0.03 \text{ GeV/c}^2$ Buchmüller & Flächer (Kinetic) [261] $ V_{cb} = (41.96 \pm 0.23_{exp} \pm 0.35_{HQE} \pm 0.59_{\Gamma_{SL}}) \times 10^{-3}$ $m_b^{kin} = 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} \text{ GeV/c}^2$ Belle (Kinetic) [278] $ V_{cb} = (41.93 \pm 0.65_{fit} \pm 0.48_{\alpha_s} \pm 0.68_{theory}) \times 10^{-3}$ $m_b^{kin} = 4.564 \pm 0.076 \text{ GeV/c}^2$	BABAR (Kinetic) [276]	
$ \begin{array}{ll} m_b^{1\mathrm{S}} = 4.68 \pm 0.03 \mathrm{GeV/c^2} \\ \hline m_b^{1\mathrm{S}} = 4.59 \pm 0.23_{exp} \pm 0.35_{HQE} \pm 0.59_{\Gamma_{\mathrm{SL}}}) \times 10^{-3} \\ \hline m_b^{1\mathrm{S}} = 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} \mathrm{GeV/c^2} \\ \hline m_b^{1\mathrm{S}} = 4.564 \pm 0.076 \mathrm{GeV/c^2} \\ \hline m_b^{1\mathrm{S}} = 4.564 \pm 0.076 \mathrm{GeV/c^2} \\ \hline \end{array} $		
Buchmüller & Flächer (Kinetic) [261] $ V_{cb} = (41.96 \pm 0.23_{exp} \pm 0.35_{HQE} \pm 0.59_{\Gamma_{SL}}) \times 10^{-3}$ $m_b^{kin} = 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} \mathrm{GeV/c^2}$ Belle (Kinetic) [278] $ V_{cb} = (41.93 \pm 0.65_{fit} \pm 0.48_{\alpha_s} \pm 0.68_{theory}) \times 10^{-3}$ $m_b^{kin} = 4.564 \pm 0.076 \mathrm{GeV/c^2}$	Bauer <i>et al.</i> (1S) [277]	·
$\begin{array}{c} m_b^{\rm kin} = 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} {\rm GeV/c^2} \\ \hline \\ \mbox{Belle (Kinetic) [278]} & V_{cb} = (41.93 \pm 0.65_{fit} \pm 0.48_{\alpha_s} \pm 0.68_{theory}) \times 10^{-3} \\ m_b^{\rm kin} = 4.564 \pm 0.076 {\rm GeV/c^2} \end{array}$		$m_b^{1S} = 4.68 \pm 0.03 \mathrm{GeV/c^2}$
Belle (Kinetic) [278] $\begin{aligned} V_{cb} &= (41.93 \pm 0.65_{fit} \pm 0.48_{\alpha_s} \pm 0.68_{theory}) \times 10^{-3} \\ m_b^{\rm kin} &= 4.564 \pm 0.076 {\rm GeV/c^2} \end{aligned}$	Buchmüller & Flächer (Kinetic) [261]	
$m_b^{\rm kin} = 4.564 \pm 0.076 {\rm GeV/c^2}$		$m_b^{\rm kin} = 4.59 \pm 0.025_{exp} \pm 0.030_{HQE} {\rm GeV/c^2}$
· · · · · · · · · · · · · · · · · · ·	Belle (Kinetic) [278]	
Belle (1S) [278] $ V_{cb} = (41.5 \pm 0.5_{fit} \pm 0.2_{rp}) \times 10^{-3}$		
	Belle $(1S)$ [278]	$ V_{cb} = (41.5 \pm 0.5_{fit} \pm 0.2_{\tau_B}) \times 10^{-3}$
$m_b^{1\rm S} = 4.73 \pm 0.05 { m GeV/c^2}$		$m_b^{1S} = 4.73 \pm 0.05 \mathrm{GeV/c^2}$

2007 HFAG fit (prelim.)

[→ thanks to Phillip Urquijo]

 $|V_{cb}| = (41.78 \pm 0.36_{fit} \pm 0.08_{\tau B}) \cdot 10^{-3}$ $m_b^{1S} = (4.701 \pm 0.030) \text{ GeV}$

Perturbative error on $|V_{cb}|$

 γ, Z

- Moments insensitive to normalization of decay rate
- $O(\alpha_s^2)$ corrections to $\Gamma(B \rightarrow X_c | v)$ still unknown (calculation in progress)
- Look at similar processes:

- $\Gamma(B \rightarrow X_u | v)$: 1 - 0.77 α_s - (2.50_{BLM} - 0.34) α_s^2 +...

[van Ritbergen (1999)]

RERRER O

- $\Gamma(\tau \rightarrow X\nu)$: 1 + 0.32 α_s + 0.53 α_s^2 + 0.85 α_s^3 + ... (BLM approximation to 3rd-order term poor)

Important: expansion is never in powers of $(\alpha_s/4\pi)!$

Perturbative error on $|V_{cb}|$

• With $\mu = m_b/2$:

 $0.34\alpha_s^2 = 0.028$ $0.85\alpha_s^3 = 0.020$

• Add in quadrature and take 1/2 to estimate perturbative error on $|V_{cb}|$:

$$\delta |V_{cb}|_{pert} = \pm 0.72 \cdot 10^{-3}$$
 (1.7%)

 \rightarrow twice as large as quoted total theory error!

<u>Important</u>: when $O(\beta_0 \alpha_s^2)$ terms are included, scale variation cannot be used to estimate unknown higher-order terms!

Perturbative error on m_b

• Conversion to mass definition scheme introduces irreducible theory uncertainty

 γ, Z

- (Gu)estimates:
- $\begin{array}{l} \delta m_{b} \sim 100 \ \text{MeV} \ (\text{order} \ \alpha_{s}) \\ \delta m_{b} \sim 60 \ \text{MeV} \ (\text{order} \ \beta_{0} \alpha_{s}^{\ 2}) \\ \delta m_{b} \sim 30 \ \text{MeV} \ (\text{order} \ \alpha_{s}^{\ 2}) \end{array}$

. Leeeeee

present

(Note: Values for m_b^{1S} obtained by different groups differ by 110 MeV!)

• Result:

$$\delta m_{b,pert} = \pm 60 \text{ MeV} (1.3\%)$$

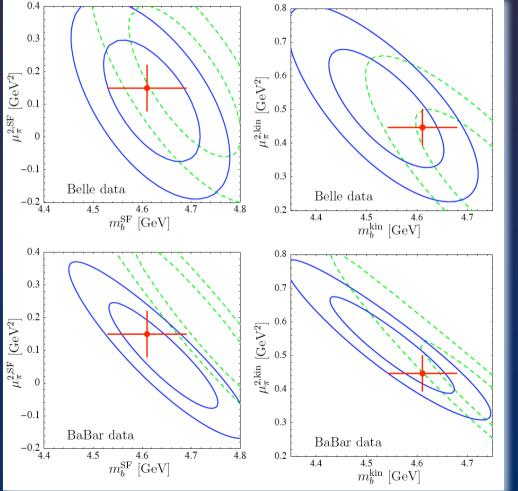
→ twice as large as quoted total theory error! → very important for $|V_{ub}|$ determination!

$B \rightarrow X_s \gamma$ photon energy moments

Leeeeer

 Inclusion in global OPE fit problematic due to sensitivity to very low scales

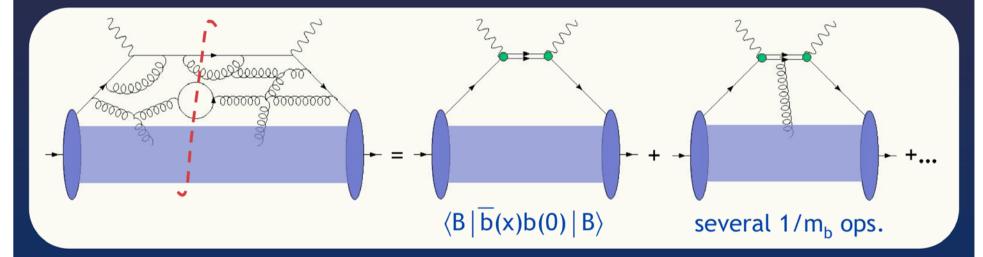
 γ, Z


- Cut $E_{\gamma} > E_0$ introduces $\Delta = m_b 2E_0 \approx 1$ GeV much below m_b
- Theoretical treatment requires multi-scale OPE:

[M.N. (2004)]

$B \rightarrow X_{s\gamma}$ photon energy moments

Only complete NNLO calculation ($\sim \alpha_s^2$) available [M.N. (2005)] • Results (Belle data): $m_{h}^{SF} = (4.622 \pm 0.099 \pm 0.030) \text{ GeV}$ $\mu_{\pi}^{2,SF} = (0.108 \pm 0.186 \pm 0.077) \text{ GeV}^2$ $m_{h}^{kin} = (4.534 \pm 0.114 \pm 0.041) \text{ GeV}$ $\mu_{\pi}^{2,\text{kin}} = (0.495 \pm 0.176 \pm 0.085) \text{ GeV}^2$ \rightarrow very small theory errors, but not used by HFAG



Inclusive B-X lv Decay:

Theoretical tool: LC expansion

[M.N. (1993); Bigi et al. (1993)]
 Expansion in light-cone operators:

 Hadronic physics encoded in nonperturbative shape functions (generalized PDFs)

Factorization

• Factorization formula: [Korchemsky, Sterman (1994)]

 $d\Gamma(B \rightarrow light) = H J \otimes S$

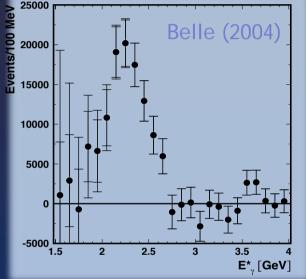
hard and jet functions (perturbative)

 γ, Z

shape functions (nonperturbative)

deegeeer

• Shape functions are universal, process independent

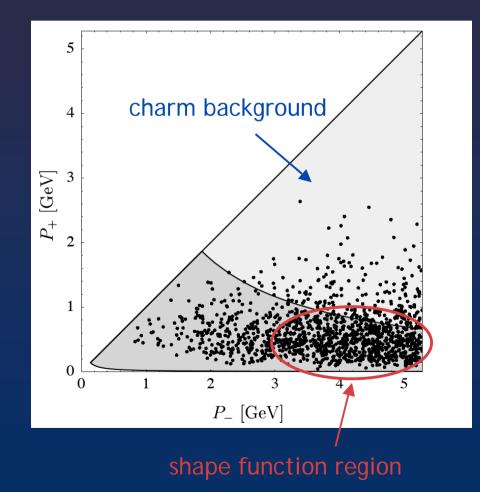


Strategy

 γ, Z

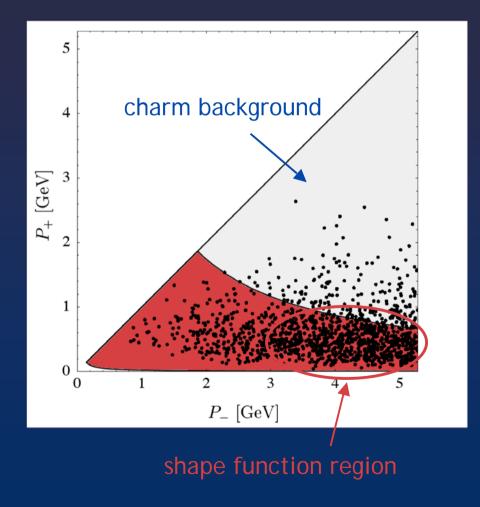
 Extract shape function from B→X_sγ photon spectrum, then predict arbitrary B→X_ulv decay distributions

[Bosch, Lange, M.N., Paz (2004,2005)]

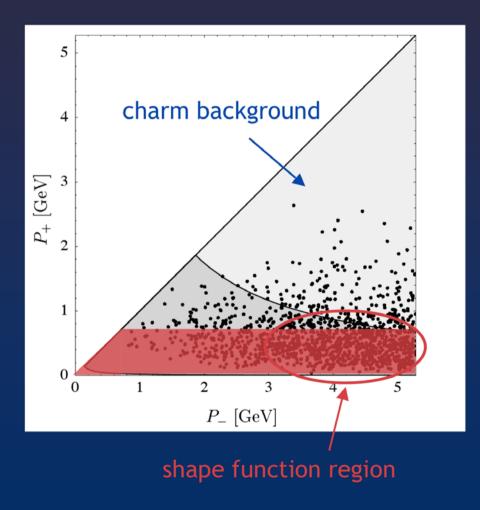


2000000

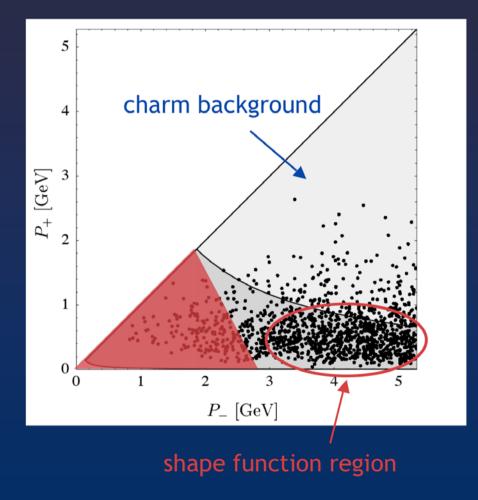
- Functional form constrained moment relations (also for subleading SFs)
- Knowledge of m_b and $\mu_\pi{}^2$ helps, but does not eliminate uncertainties



- Hadronic phase space is most transparent in variables P₊=E_X-P_X and P₋=E_X+P_X
- P₊«P₋ for most cuts eliminating charm background
- Collinear kinematics



• Cut on hadronic invariant mass: $M_X^2 < M_D^2$



- Cut on hadronic invariant mass: $M_X^2 < M_D^2$
- Cut on hadronic $P_+ < M_D^2 / M_B$ or lepton $E_l > (M_B^2 - M_D^2) / 2M_B$

- Cut on hadronic invariant mass: $M_X^2 < M_D^2$
- Cut on hadronic $P_+ < M_D^2 / M_B$ or lepton $E_l > (M_B^2 - M_D^2) / 2M_B$
- Cut on leptonic invariant mass q²>(M_B-M_D)²

Status of theory (BLNP)

deeeeee

- Leading term at O(α_s), partial results at O(α_s^2) [M.N. (2004); Becher, M.N. (2005,2006)]
- Large Sudakov logarithms resummed to all orders in perturbation theory (at NLO)
- Subleading shape functions included at tree level
 → 1/m_b terms integrate to zero in inclusive rates
 [Lee, Stewart (2004); Bosch, M.N., Paz (2004); Beneke et al. (2005)]
- Kinematical power corrections included at $O(\alpha_s)$
- Residual $\mu_{\pi,G}^2/m_b^2$ corrections included at tree level
- Sensitivity to m_b and heavy-quark parameters only via shape-function moments!

THEP

Leeeeee

Status of theory (BLNP)

- Error budget:
 - perturbative uncertainty estimated by scale variation (three scales)
 - power corrections estimated by sampling over 729 different sets of subleading shape functions
 - weak annihilation (±1.8% on total rate)
- Sensitivity to leading shape function is treated as an experimental error!

Predictions for various cuts

	$m_b \; [{\rm GeV}]$	4.50	4.55	4.60	4.65	4.70	Theory Error
$M_X \le M_D$	a	9.5	8.8	8.2	7.7	7.3	7%
Eff = 84%	Functional Form	1.4%	1.1%	0.8%	0.5%	0.4%	/ /0
$M_X \le 1.7 \mathrm{GeV}$	a	12.5	11.5	10.5	9.7	8.9	7%
Eff = 75%	Functional Form	2.9%	2.6%	2.2%	1.9%	1.6%	7 70
$M_X \le 1.7 \mathrm{GeV}$	a	10.3	9.8	9.3	9.0	8.7	10%
$q^2 \ge 8 \mathrm{GeV^2}$ 35%	Functional Form	2.0%	1.7%	1.5%	1.4%	1.4%	1070
$q^2 \ge (M_B - M_D)^2$ Eff = 18%	a	11.4	11.1	10.9	10.8	10.6	15%
	Functional Form	5.0%	4.4%	4.0%	3.6%	3.2%	1070
$P_+ \le M_D^2/M_B$	a	16.7	15.0	13.6	12.2	11.1	7%
Eff = 65%	Functional Form	5.3%	4.8%	4.4%	4.0%	3.6%	7 70
$E_l \ge 2.2 \mathrm{GeV}$	a	22.6	21.0	19.7	18.5	17.4	19%
Eff = 11%	Functional Form	16.2%	13.1%	11.0%	9.3%	7.9%	1770

Rate $\Gamma \sim (m_b)^a$

[Lange, M.N., Paz (2005)]

Results for various cuts [HFAG (2007)]

	accepted region	f_u	$ V_{ub} [10^{-3}]$
CLEO [313]	$E_e > 2.1 \mathrm{GeV}$	0.13	$4.09 \pm 0.48 \pm 0.37$
BELLE [316]	$E_e > 1.9 \mathrm{GeV}$	0.24	$4.82 \pm 0.45 \pm 0.30$
BABAR $[315]$	$E_e > 2.0 \mathrm{GeV}$	0.19	$4.39 \pm 0.25 \pm 0.32$
BABAR $[314]$	$E_e > 2.0 \text{GeV}, s_{\text{h}}^{\text{max}} < 3.5 \text{GeV}^2$	0.13	$4.57 \pm 0.31 \pm 0.42$
BELLE [309]	$M_X < 1.7 \mathrm{GeV}/c^2$	0.47	$4.06 \pm 0.27 \pm 0.24$
BELLE [318]	$M_X < 1.7 \mathrm{GeV}/c^2, q^2 > 8 \mathrm{GeV}^2/c^2$	0.24	$4.37 \pm 0.46 \pm 0.29$
BABAR [317]	$M_X < 1.7 \text{GeV}/c^2, q^2 > 8 \text{GeV}^2/c^2$	0.24	$4.75 \pm 0.35 \pm 0.31$
Average	$\chi^2 = 6/6, \text{CL} = 0.41$		$4.52 \pm 0.19 \pm 0.27$
BELLE (?)	$P_{+} < 0.66 \text{ GeV}$	0.57	4.14 ± 0.35 ± 0.29 ◀

- Measurements with higher efficiency give lower |V_{ub}|!
- Small shape-function uncertainty (in exp. error) due to overly optimistic use of moment relations!

Results for various cuts [HFAG (2007)]

Leeeeeo

	accepted region	f_u	$ V_{ub} [10^{-3}]$
BELLE 316 BABAR Cad	mental error including shape function rrelated between of the states of	, which	4.82 ± 0.45 ± 0.80 is.stully5 ± 0.82
BELLE [309] BELLE [31 5] BABAR [317]	Cannot possibly be $M_X < 1.7 \text{ GeV}/c^{-}, q^{-} > 8 \text{ GeV}$	be that	$\begin{array}{c} 11 \text{ Cuts} \\ 4.06 \pm 0.27 \pm 0.24 \\ \text{small} 9.46 \pm 0.29 \\ \hline 4.75 \pm 0.35 \pm 0.31 \end{array}$
Average	$\chi^2=6/6,$ CL= 0.41		$4.52 \pm 0.19 \pm 0.27$
BELLE (?)	$P_{+} < 0.66 \text{ GeV}$	0.57	$4.14 \pm 0.35 \pm 0.29$

 γ, Z

- Measurements with higher efficiency give lower |V_{ub}|!
- Small shape-function uncertainty (in exp. error) due to overly optimistic use of moment relations!

Alternative schemes

• Dressed Gluon Exponentiation (DGE):

 γ, Z

[Gardi (2004); Anderson, Gardi (2005)]

RERERE

- renormalon-inspired model for the leading shape function (parameter m_b)
- no attempt to include subleading shape functions or other power corrections
- less flexible functional form
- → numerical results similar to BLNP fits

Alternative schemes

Combined M_x-q² cut using OPE (BLL):

[Bauer, Ligeti, Luke (2000,2001)]

.

- cutting on leptonic invariant mass in part eliminates shape-function region
- low efficiency and enhanced sensitivity to weak annihilation
- OPE approach reintroduces sensitivity to b-quark mass (~10th power!)
- Gives largest $|V_{ub}|$ by far (~ 5.0.10⁻³)!

GUTENBERSITAT

Shape-function free relations

• At leading power (only), possible to construct shape-function free relations between weighted spectra, e.g.:

$$\left|\frac{V_{ub}}{V_{cb}}\right|^2 \simeq \left|\frac{V_{ub}}{V_{tb}V_{ts}^*}\right|^2 = \frac{3\alpha}{\pi} |c_7(m_b)|^2 \eta_{\text{QCD}} \frac{\widehat{\Gamma}_u(E_0)}{\widehat{\Gamma}_s(E_0)} + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

leading logs

with:

$$\widehat{\Gamma}_{u}(E_{0}) \equiv \int_{E_{0}}^{\infty} dE_{\ell} \frac{d\Gamma(B \to X_{u} \ell \bar{\nu})}{dE_{\ell}}$$

$$\widehat{\Gamma}_{s}(E_{0}) \equiv \frac{2}{m_{B}} \int_{E_{0}}^{\infty} dE_{\gamma} (E_{\gamma} - E_{0}) \frac{d\Gamma(B \to X_{s} \gamma)}{dE_{\gamma}}$$
[M.N. (1993)]

GUTENBERG MAINZ

Shape-function free relations

 γ, Z

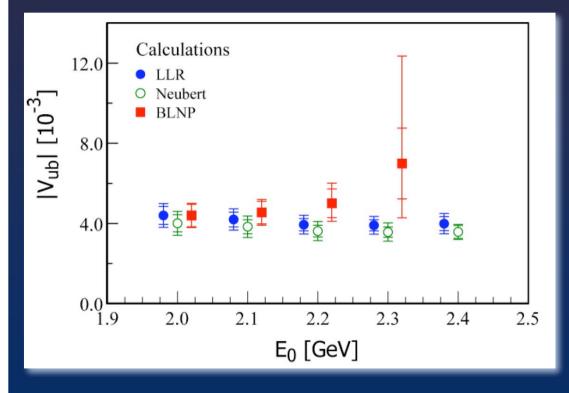
- Refinements:
 - resummation of subleading logs (but introducing Landau pole!) and extension to hadronic mass distribution [Leibovich, Low, Rothstein (1999,2000)]
 - inclusion of NLO QCD corrections [M.N. (2001)]
 - generalization to arbitrary cuts, inclusion of subleading shape functions and higher power corrections, removal of Landau pole singularity, ...
 - → first systematic error estimates!

[Lange, M.N., Paz (2005); Lange (2005)]

QQQQQQQ

Shape-function free relations

• Example:


$$\Gamma_u(\Delta) = \underbrace{\int_0^{\Delta} dP_+ \frac{d\Gamma_u}{dP_+}}_{\text{exp. input}} = |V_{ub}|^2 \int_0^{\Delta} dP_+ \underbrace{W(\Delta, P_+)}_{\text{theory}} \underbrace{\frac{1}{\sum_{s \in E_*} \frac{d\Gamma_s}{dP_+}}_{\text{exp. input}} \underbrace{\frac{d\Gamma_s}{dP_+}}_{\text{exp. input}}$$

- weight function perturbatively calculable; leading O(α_s^2) terms included!
- hadronic uncertainties enter at O(1/m_b)
- error analysis like in BLNP

Shape-function free relations

BaBar analysis of lepton spectrum:

- good lesson on treatment of theory errors in exp. analyses
- only BLNP includes power corrections and complete error analysis
- errors must blow up at large E₀!

Result: $|V_{ub}| = (4.40\pm0.30\pm0.41_{th}\pm0.23)\cdot10^{-3}$

Summary

• $B \rightarrow X_c lv$ decays:

 $\delta |V_{cb}|_{th} = \pm 0.8 \cdot 10^{-3}$ (2%) $\delta m_{b,th} = \pm 70 \text{ MeV}$ (1.5%)

deegeeer

• $B \rightarrow X_u lv$ decays: $\delta |V_{ub}|_{th} \ge \pm 0.3 \cdot 10^{-3}$ (7%) depending on cut

→ best determinations (highest efficiency, best theoretical control) yield:

 $|V_{ub}| = (4.10 \pm 0.30_{exp}(?) \pm 0.29_{th}) \cdot 10^{-3}$

Consistent with recent exclusive values! \rightarrow talk by P. Ball

Summary

 γ, Z

RERERER

- General remarks:
 - makes no sense to average theory approaches referring to different approximations (LO vs. NLO, inclusion of power corrections, etc.)
 - makes no sense to quote small theory errors from approaches that do not include error analysis
- Closer interaction with theorists required in HFAG (should revive V_{xb} workshops)!