Vub Experimental Results

Youngjoon Kwon
 Yonsei Univ. / Belle

- Motivation \& basic issues
- Results
- exclusive
- inclusive
- Summary

Motivations

- Non-zero Vub --> CP violation in B decays
- V_{ub} vs. $\sin \left(2 \phi_{\mathrm{I}}\right)$--> strong constraint on UT.

Direct: $\sin 2 \phi_{1}=0.67 \pm 0.03$
Indirect: $\sin 2 \phi_{1}=0.76 \pm 0.04$

Difference: $\quad=0.09 \pm 0.05$
Not statistically significant, but...
Model independent NP in B mixing
Add new amplitude to SM

$$
A_{d}=A_{d}^{\mathrm{SM}}\left(1+\left|A_{d}^{\mathrm{NP}} / A_{d}^{\mathrm{SM}}\right| e^{i 2 \phi_{d}^{\mathrm{NP}}}\right)
$$

\rightarrow modifies ϕ_{1} to $\phi_{1}+\phi_{d}{ }^{N P}$

Fellowship of the ring

CLEO
and many theorists

ARGUS

LE $\times 4$

LHCb

Semileptonic B for V_{ub}

* $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from tree level processes.
* Presence of a single hadronic current allows control of theoretical uncertainties.

$$
|\sqrt{ }| \sqrt{ } b\left|>\left|V_{u b}\right| \frac{\Gamma\left(b \rightarrow u \ell^{-} \bar{\nu}\right)}{\Gamma\left(b \rightarrow c \ell^{-} \bar{\nu}\right)} \approx \frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}} \approx \frac{1}{50}\right.
$$

kinematic variables for B XIV

$E_{\ell}=$ lepton energy
$q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}$
$m_{X}=$ mass of the hadronic part

The "Two Towers"

粼 Exclusive

- good suppression of b --> c; high S/N
- but, small BF
- need Form Factor as a ftn. of q^{2}

$$
\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}}=\left|V_{u b}\right|^{2} \frac{G_{F}^{2}}{24 \pi^{3}}\left|\mathbf{p}_{\pi}\right|^{3}\left|f^{+}\left(q^{2}\right)\right|^{2}
$$

颣 Inclusive

- easy at the parton-level
- kinematic cuts to cope with b--> c
- need to know non-pert. effects (SF)

Electron and Muon identification in Belle

Light yield in Cerenkov Detector

Track and cluster matching

Range and transverse scattering in Muon/ hadron detector

Notable Milestones

- non-zero V_{ub} from both inclusive \& exclusive

CLEO, PRL 77, 5000 (1996)

systematics. Averaging over the the different models, we find $\left|V_{u b}\right|=\left(3.3 \pm 0.2_{-0.4}^{+0.3} \pm 0.7\right) \times 10^{-3}$, where the errors are statistical, systematic (including B^{0} lifetime), and estimated model dependence. This agrees with the

Novel X_{u} recon. by Belle

- v reconstruction by $(E, p)_{\text {miss }}$
- "simulated annealing" to separate the particles as belonging to signal B and the other B
see S. Kirkpatrick et al., Science 220, No. 4598 (1983)
- good effi. w/ reasonable M_{x} resol.
- Belle's result: PRL 92, I 0 I 80 I(2004)

- First result with $M_{x} \& q^{2}$ cut

In the $\operatorname{PDG}(2004)$ mini-review on V_{ub}

> uncertainties $\pm 0.0044 \pm 0.0048-0.0012$, where the tirst error is statistical, the second is systematic, and the third is the uncertainty due to the form factor model variations. We combine the last two in quadrature.

DETERMINATION OF $\boldsymbol{V}_{\boldsymbol{u}}$

Updated December 2003 by M. Battaglia (University of California, Berkeley and LBNL) and L. Gibbons (Cornell University, Ithaca) .

The precise determination of a robust, well-understood uncertai goals of the heavy flavor physics prc and theoretically. Because $\left|V_{u b}\right|$, t CKM mixing matrix, provides a bc one of the triangles representing tl CKM matrix it nlave a crucial rol
a premerence on expermentan tecmmque. m meed, we ıook iorwara to a similar (or improved) analysis when a sample of clean results based on fully tagged B samples have been obtained for all regions of phase space.

At present only Belle [46] has contributed a result for this region of phase space, so for now we take this result as the "central value":

$$
\begin{align*}
\left|V_{u b}\right| / 10^{-3} & =4.63 \pm 0.28_{\mathrm{stat}} \pm 0.39_{\mathrm{sys}} \pm 0.48_{\mathrm{f}_{\mathrm{qM}}} \pm 0.32_{\Gamma \mathrm{thy}} \\
& \pm \sigma_{\mathrm{WA}} \pm \sigma_{\mathrm{SSF}} \pm \sigma_{\mathrm{LQD}} \tag{5}
\end{align*}
$$

Additional measurements by the B factories of the rate in this region of phase space will soon improve the experimental uncertainties.

Roadmap for V_{ub} - "Morri"d chart"

Exclusive $B \rightarrow X_{u} \ell \nu$

Form-factors for exclusive
 - for the non-pert. QCD effect

Hadronic current H^{μ} for $\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}$:

$$
H^{\mu}=\left\langle\pi^{+}\left(p^{\prime}\right)\right| u \gamma^{\mu} b\left|\bar{B}^{0}(p)\right\rangle=f^{+}\left(q^{2}\right)\left(p+p^{\prime}\right)^{\mu}
$$

In the limit of massless lepton,

$$
\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2} d \cos \theta_{\ell}}=\left|V_{u b}\right|^{2} \frac{G_{F}^{2}}{32 \pi^{3}}\left|\vec{p}_{\pi}\right|^{3} \sin ^{2} \theta_{\ell}\left|f^{+}\left(q^{2}\right)\right|^{2}
$$

HPQCD, PRD73, 074502 (2006)

- Form-factor models based on
- Relativistic quark models (ISGW2)
- LCSR for low q2
- LQCD for high q2

How well can we measure the q^{2} dist. for $B \rightarrow X_{u} l v$?

To tag, or not to tag...

- tagged with
- Hadronic B ("Full Reconstruction")
- Semileptonic B
- untagged
- loose neutrino reconstruction

Tagging with hadronic B ("Full Recon")

Tagging with semileptonic B

$$
B_{\mathrm{tag}} \rightarrow D^{*} \ell^{+} \nu, \quad B_{\mathrm{sig}} \rightarrow \pi / \rho \ell^{+} \nu
$$

Fig. 1. Kinematics of the double semileptonic decay.

$B \rightarrow \pi \ell \nu$ with $D^{*} \ell \nu$ tagging

$B_{\mathrm{tag}} \rightarrow D^{*} \ell^{+} \nu, \quad B_{\mathrm{sig}} \rightarrow \pi / \rho \ell^{+} \nu$
calibration modes

Fig. 1. Kinematics of the double semileptonic decay.

$z_{B}=\cos \theta_{B_{1}}^{*}, y_{B}=\left(\cos \theta_{B_{2}}^{*}-\cos \theta_{B_{2}}^{*} \cos \theta_{12}^{*}\right) / \sin \theta_{12}^{*}$,
$x_{B}{ }^{2}=1-\frac{1}{\sin ^{2} \theta_{12}^{*}}\left(\cos ^{2} \theta_{B_{1}}^{*}+\cos ^{2} \theta_{B_{2}}^{*}-2 \cos \theta_{B_{1}}^{*} \cos \theta_{B_{2}}^{*} \cos \theta_{12}^{*}\right)$
for true signal, $0<x_{B}^{2}<1$
\exists 2-fold ambiguity for \vec{n}_{B}

$B \rightarrow \pi \ell \nu$ with $D^{*} \ell \nu$ tagging

\mathcal{B}

- Because of the 2-fold ambig. in the B direction, q^{2} is not exactly measured
- Use modified $q^{2} \quad q^{2} \Leftarrow\left(E_{\text {beam }}-E_{X_{u}}\right)^{2}-\left|\vec{p}_{X_{u}}\right|^{2}$

$$
\sigma_{q^{2}}: 0.95 \sim 0.32 \mathrm{GeV}^{2}
$$

Detection efficiency matrix based on the LCSR model in units of 10^{-3}

Generated mode	True $q^{2}\left(\mathrm{GeV}^{2} / c^{2}\right)$	Reconstructed $q^{2}\left(\mathrm{GeV}^{2} / c^{2}\right)$		
		<8	$8-16$	$\geqslant 16$
$\pi^{-} \ell^{+} \nu$	<8	1.71	0.05	0.00
	$8-16$	0.21	1.82	0.03
	$\geqslant 16$	0.00	0.24	1.89
$\rho^{0} \ell^{+} \nu$	<8	1.50	0.10	0.01
	$8-16$	0.08	1.71	0.08
	$\geqslant 16$	0.01	0.13	1.82

$B \rightarrow \pi \ell \nu$ with $D^{*} \ell \nu$ tagging

Signal yields and the χ^{2} values for each q^{2} region

Mode	$N_{<8}$	N_{8-16}	$N_{\geqslant 16}$
$\pi^{-} l^{+} \nu$	64.8 ± 11.9	63.2 ± 12.4	40.6 ± 11.3
$\rho^{-} l^{+} \nu$	22.1 ± 8.0	53.2 ± 13.5	30.9 ± 16.0
$\pi^{0} l^{+} \nu$	18.1 ± 5.1	34.5 ± 8.3	18.6 ± 6.5
$\rho^{0} l^{+} \nu$	47.2 ± 11.2	68.3 ± 16.5	32.5 ± 12.3
$\chi^{2} /$ ndf	$172.4 /(200-4)$	$190.7 /(200-4)$	$172.1 /(200-4)$

$B \rightarrow \pi \ell \nu$ with $D^{*} \ell \nu$ tagging

PLB 648, I 39 (2007)

Mode	$\left\|V_{u b}\right\|\left(\times 10^{-3}\right)$
$\pi^{-} \ell^{+} \nu$	$3.59 \pm 0.51 \pm 0$ FNAL
$\pi^{0} \ell^{+} \nu$	$3.63 \pm 0.70 \pm 0.20_{-0.41}^{+0.03}$
$\pi^{-} \ell^{+} \nu+\pi^{0} \ell^{+} \nu$	$3.60 \pm 0.41 \pm 0.20_{-0.41}^{+0.62}$
$\pi^{-} \ell^{+} \nu$	$4.02 \pm 0.57=\mathbf{H P Q C D}$
$\pi^{0} \ell^{+} \nu$	$4.06 \pm 0.78 \pm 0.22_{-0.41}^{+0.41}$
$\pi^{-} \ell^{+} \nu+\pi^{0} \ell^{+} \nu$	$4.03 \pm 0.46 \pm 0.22_{-0.41}^{+0.59}$

$B \rightarrow \pi \ell \nu$ with B_{tag}

- Hadronic tag
- charge/flavor correl. for π \& ℓ
- no (small) add'l neutral energy
- $\left|m_{\text {miss }}^{2}\right|<0.3 \mathrm{GeV}^{2}$
- Semileptonic tag
- $D^{(*)} \ell \nu$ for $B_{\text {tag }}$
- no (small) add'l neutral energy
- max-like. fit to $\cos ^{2} \phi_{B}$

$\phi_{B}=\mathrm{b} / \mathrm{w}$ the B and the plane of $\left(D^{(*)} \ell, \pi \ell\right)$

$B \rightarrow \pi \ell \nu$ with B_{tag}

PRL 97, 211801 (2006)

	$q^{2}\left(\mathrm{GeV}^{2}\right)$	$\Delta \zeta\left(\mathrm{ps}^{-1}\right)$	$\left\|V_{u b}\right\|\left(10^{-3}\right)$
Ball-Zwicky [5]	<16	5.44 ± 1.43	$3.2 \pm 0.2 \pm 0.1_{-0.4}^{+0.5}$
Gulez et al. $[6]$	>16	1.46 ± 0.35	$4.5 \pm 0.5 \pm 0.3_{-0.5}^{+0.7}$
Okamoto et al. $[7]$	>16	1.83 ± 0.50	$4.0 \pm 0.5 \pm 0.3_{-0.5}^{+0.7}$
Abada et al. $[8]$	>16	1.80 ± 0.86	$4.1 \pm 0.5 \pm 0.3_{-0.7}^{+1.6}$

$B \rightarrow \pi \ell \nu$ with full-recon. B_{tag}

preliminary (hep-ex/0610054)

$\mathcal{B}\left(\mathrm{B} \rightarrow \pi^{+} \ell \nu\right)=$
$\left(1.49 \pm 0.26_{\text {stat }} \pm 0.06_{\text {syst }}\right) \times 10^{-4}$
$\mathcal{B}\left(\mathrm{B} \rightarrow \pi^{0} \ell \nu\right)=$
$\left(0.86 \pm 0.17_{\text {stat }} \pm 0.06_{\text {syst }}\right) \times 10^{-4}$
$N_{B B}=535 \times 10^{6}$

Measurement of the $B^{0} \rightarrow \pi^{-} \ell^{+} \nu$ Form-Factor Shape and Branching Fraction,
Determination of $\left|V_{u b}\right|$ with 2 Loose Neutrino Reconstruction Technique

- loose requirement on $\pi^{-} \ell^{+}$
- cuts optimized as a ftn. of q^{2}
- eff. up by ~ 4 times
- "Y-averaged" q^{2}

$$
\tilde{q}^{2}=\frac{1}{4} \sum_{i=1}^{4} q_{i}^{2}
$$

Measurement of the $B^{0} \rightarrow \pi^{-} \ell^{+} \nu$ Form-Factor Shape and Branching Fraction,
Determination of $\left|V_{u b}\right|$ with 2 Loose Neutrino Reconstruction Technique
binned max. lik'd fit to (mes, $\Delta \mathrm{E}, \mathrm{q}^{2}$)

FIG. 1: Yield fit projections for (a,b) m_{ES} with $-0.16<$ $\Delta E<0.20 \mathrm{GeV}$; and (c,d) ΔE with $m_{\mathrm{ES}}>5.272 \mathrm{GeV}$. The

hep-ex/06I2020 $\left|V_{u b}\right|=\left(4.1 \pm 0.2 \pm 0.2_{-0.4}^{+0.6}\right) \times 10^{-3} \mid$ on $q^{2}>16$;by ${ }^{\text {Untolded } \mathrm{q}^{2}\left(\mathrm{Gev}^{2} / \mathrm{c}^{4}\right)}$

V_{ub} exclusive summary

Experiments starting to measure form factor shape from data; allows elimination of some theory models

Inclusive $B \rightarrow X_{u} \ell \nu$

 q^{2} and M_{x} requires info. on missing $v-->$ how?

- Global quark-hadron duality
- V_{cb} : excl. vs. incl. (OK)
- Weak annihil.
- q^{2} distorted $\sim \mathrm{mb}^{2}$
- but, UL. from CLEO $\Gamma_{\text {WA }} / \Gamma_{b \rightarrow u}<7.4 \%$
- need SF for non-pert. effects
- SF parameters
- E_{γ} from $B \rightarrow X_{s} \gamma$
$\begin{array}{ll}-E_{\ell}, M_{X} \text { from } B \rightarrow X \ell \nu & \\ b-l e a d i n g \text { SF? }\end{array}$

Vub from Inclusive Methods

- endpoint of E (lepton)
- using SF parameters from moments
- tagged: for (Mx, q^{2})
- using SF parameters from moments
- LLR ("weighted") -- reduced dependence on SF

Vub from Lepton End-point

$\left(4.44 \pm 0.25_{-0.38}^{+0.42} \pm 0.22\right) \times 10^{-3}$ BLNP with $X_{s} \gamma$ and $X_{c} \ell \nu$ moments

PLB 62 I, 28 (2005)

$\left(5.08 \pm 0.47 \pm 0.42_{-0.23}^{+0.26}\right) \times 10^{-3}$ BLNP with $X_{s} \gamma$ moments

$V_{u b}$ from Inclusive $\mathrm{w} /\left(M_{X}, q^{2}\right)$

- Why cut on $\left(M_{X}, q^{2}\right)$?
- high q^{2} : favorable for OPE
- low M_{X} : controls $1 / m_{c}^{3}$ blow-out
- use Full-recon. tagging

$$
\begin{aligned}
\left|V_{u b}\right|_{\text {Belle } B \rightarrow X_{s} \gamma}^{\text {BLNP }} & =\left(5.00 \pm 0.27_{\text {stat }} \pm 0.26_{\text {syst }} \pm 0.46_{\mathrm{SF}} \pm 0.28_{\mathrm{th}}\right) \times 10^{-3} \\
\left|V_{u b}\right|_{B A B A R ~}^{\text {BLNP }}{ }_{B A \bar{\nu}} & =\left(4.65 \pm 0.24_{\text {stat }} \pm 0.24_{\text {syst }}{ }_{-0.38 \mathrm{SF}}^{+0.46} \pm 0.23_{\mathrm{th}}\right) \times 10^{-3}
\end{aligned}
$$

q^{2} Distribution ($m_{\mathrm{X}}<1.7 \mathrm{GeV}$)

m_{X} Distribution $\left(q^{2}>8 \mathrm{GeV}^{2}\right)$

M_{X} / q^{2}	4.70	5.0	4.4	3.1	2.7	4.2	${ }_{-5.2}^{+4.8}$
M_{X}	4.09	4.6	3.5	3.1	1.1	4.5	${ }_{-3.8}^{+3.5}$

Vub Inclusive (LLR method)

- $m_{X_{u}}\left(B \rightarrow X_{u} \ell \nu\right)$ and $E_{\gamma}\left(B \rightarrow X_{s} \gamma\right)$
- To reduce dependence on SF modelling
- two methods
$\star m_{X_{u}}$ in full range (U, HLM)

$$
\begin{aligned}
& \star m_{X_{u}}<\zeta(<1.67 \mathrm{GeV})(\mathrm{LLR}) \\
& \Gamma\left(B \rightarrow X_{u} \ell \nu\right)=\frac{\left|V_{u b}\right|^{2}}{\left|V_{t s}\right|^{2}} \int W\left(E_{\gamma}\right) \frac{d \Gamma\left(B \rightarrow X_{s} \gamma\right)}{d E_{\gamma}} d E_{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left|V_{u b}\right|}{\left|V_{t s}\right|}=\left\{\frac{6 \alpha\left(1+H_{\text {mix }}^{\gamma}\right)\left(C_{7}^{(0)}\right)^{2}}{\pi\left[I_{0}(\zeta)+I_{+}(\zeta)\right]} \delta \mathcal{R}_{u}(\zeta)\right\}^{1 / 2} \\
& \quad I_{0(+)}(\zeta)=\int_{g(\zeta)}^{1} d E_{\gamma} \frac{d \Gamma_{s \gamma}}{d E_{\gamma}} W_{0(+)}\left(E_{\gamma}\right) \\
& \\
& W_{0(+)}: \text { accurate up to } \mathcal{O}\left(\alpha_{s}^{2}\right) \text { and } \mathcal{O}\left(\Lambda m_{B} /\left(\zeta m_{b}\right)\right)
\end{aligned}
$$

Vub Inclusive (LLR method)

PRL 96, 221801 (2006)

LLR: $\mathrm{M}_{\mathrm{x}}<1.67 \mathrm{GeV}:\left|\mathrm{V}_{\mathrm{ub}}\right|=\left(4.43 \pm 0.38_{\text {stat }} \pm 0.25_{\text {syst }} \pm 0.29_{\text {theo }}\right) 10^{-3} 12 \% \quad 72 \%$ OPE: $\mathrm{M}_{\mathrm{x}}<2.50 \mathrm{GeV}:\left|\mathrm{V}_{\mathrm{ub}}\right|=\left(3.84 \pm 0.70_{\text {stat }} \pm 0.30_{\text {syst }} \pm 0.10_{\text {theo }}\right) 10^{-3} 20 \% \quad 98 \%$

V_{ub} inclusive summary

BLNP: Bosch, Lange, Neubert, Paz (2005)
DGE:Anderson, Gardi (2006)
LLR: Leibovich, Low, Rothstein (2006)
HFAG Ave. (BLNP)
$4.52 \pm 0.19 \pm 0.27$

HFAG Ave. (DGE)
$4.46 \pm 0.20 \pm 0.20$

BABAR (LLR)
$4.43 \pm 0.45 \pm 0.29$

Summary

$$
\begin{aligned}
& \left|V_{u b}\right|_{\text {incl }}=(4.52 \pm 0.19 \pm 0.27) \times 10^{-3} \\
& \left|V_{u b}\right|_{\text {excl }}=\left(3.97 \pm 0.25_{-0.41}^{+0.59}\right) \times 10^{-3}
\end{aligned}
$$

- Vub from inclusive avg. give $O(6 \%)$ error
- restricted phase-space is much better understood
- check with many complementary meas'mts.
- Exclusive analyses catch up
- powerful B-tagging
- improved V-recon. --> fine-binned q2 dist. (BaBar)
- unquenched L-QCD
- Systematics (esp. for SF param.) will improve with more statistics

