

WP13 - JRA 1

WP13 = JRA1 = Innovative gas detectors

WP COORDINATORS:

Silvia Dalla Torre, Imad Laktineh

WP13, SCIENTIFIC ASPECTS

- **2 TECHNOLOGIES: the future of GAS DETECTORS**
 - **RPCs**
 - **MPGDs**
- **TASKs grouped in 3 major sectors**
 - Advanced detector developments, namely detector R&D:
 - TASK 13.2, including 5 activities
 - Tools to facilitate the detector development, namely technological R&D oriented to detector development by realizing dedicated lab instruments:
 - TASK 13.3, including 3 activities
 - Preparation for large series production, namely establishing techniques and protocols for large size/series construction, QA, production transfer to industry:
 - TASK 13.4, including 7 activities

The program is a good balance between

- R&D for better and better detector performance matching the requirements of present and future experiments
- Tool development and TT to ensure the construction of large experimental set-ups (and facilitating applications beyond research)

INFN

GAS DETECTORS

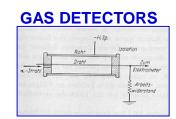
INSTITUTIONS & ACTIVITIES

GAS DETECTORS

Arbeit.

11 beneficiary groups9 partner groupsIn total : 13 Institutions

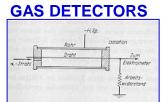
	BENEFICIARIES								PARTNERS				NEW PARTNERS						
Institute	CEA- Saclay	CERN	IN2P3- Lyon	INFN- Bari	INFN- LNF	INFN- TOV	INFN- Trieste	LIP	Lund U	MPI	Wigner	AGH Krakow		IN2P3-	INFN- Bologna	INFN- Torino	GENT	GWNU (Korea)	Dresden
tasks																			
13.1.																			
13.2.1																			
13.2.2																			
13.2.3																			
13.2.4																			ļ
13.2.5																			
13.3.1																			ļ
13.3.2																			┨────┦
13.3.3		-					-												┥───┤
13.4.1		_			-														
13.4.2 13.4.3																			┨────┦
13.4.4 13.4.4																			┨────┦
13.4.5																			<u></u>
13.4.6												İ							
13.4.7																			
RPC		MPGD																	



INFN

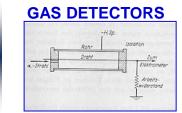
L Istituto Nazionale di Fisica Nucleare

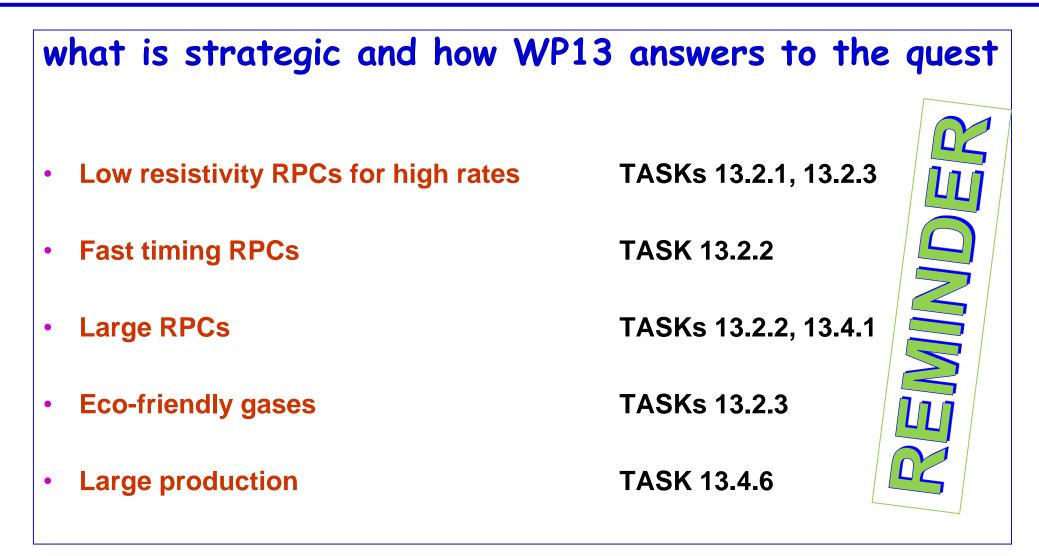
THIS REPORT



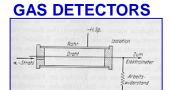
The focus of the activity report is on

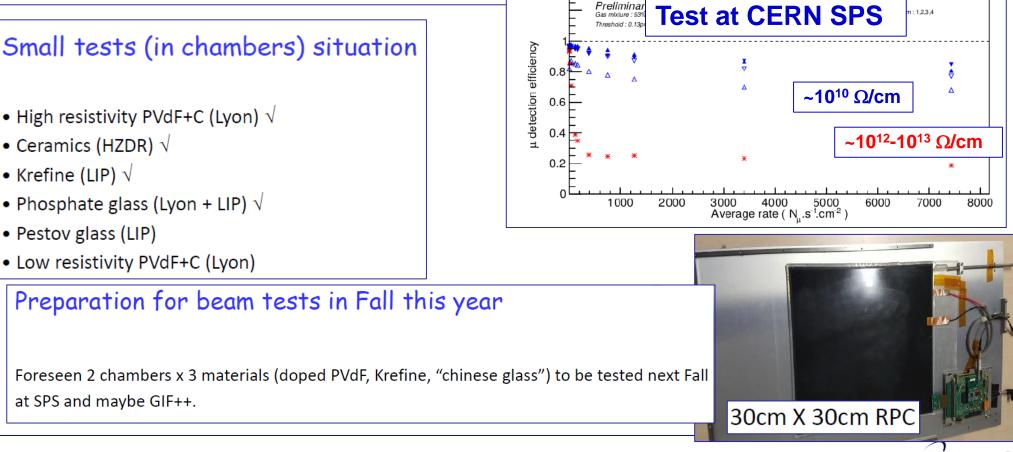
- Iast year activity
- deliverables and milestones expected in the next months
 - □ 2 DELIVERABLES, M24
 - □ 4 MILESTONES, M24
 - □ 1 MILESTONE, M26





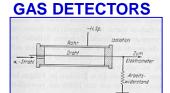
INFN Istituto Nazionale di Fisica Nucleare

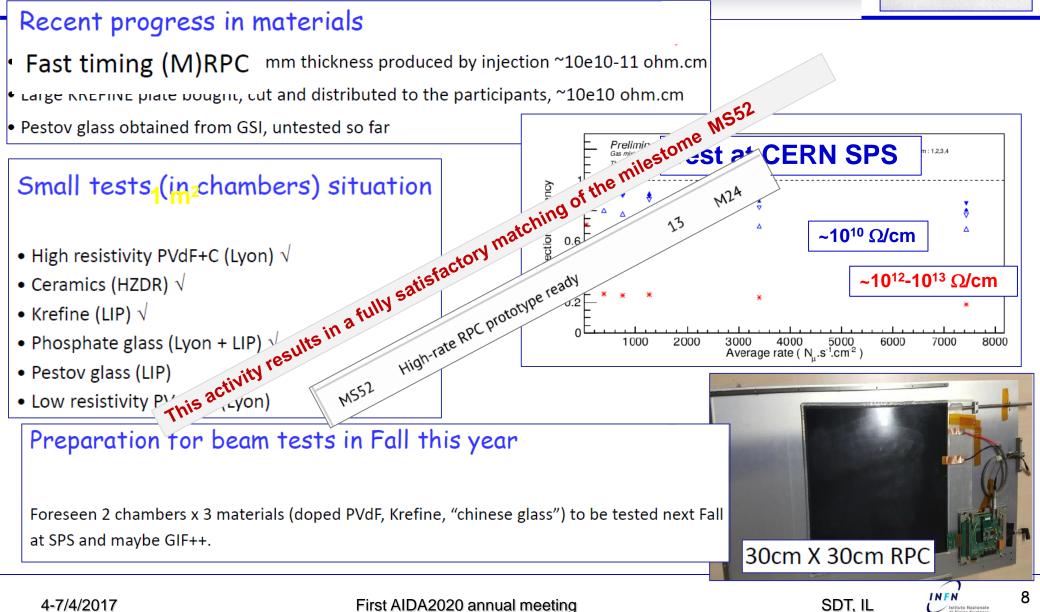



Low resistance RPCs for high rates

SDT, IL

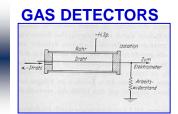
Recent progress in materials

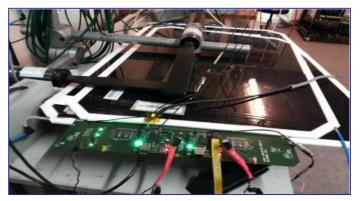

- PVdF+C plate (40x30 cm2) of 2 mm thickness produced by injection ~10e10-11 ohm.cm
- Large KREFINE plate bought, cut and distributed to the participants, ~10e10 ohm.cm
- Pestov glass obtained from GSI, untested so far



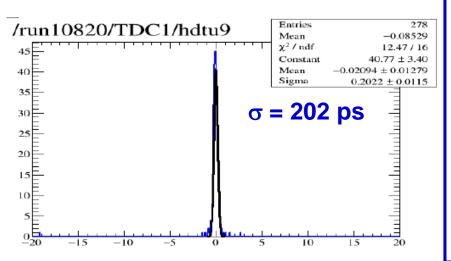
First AIDA2020 annual meeting

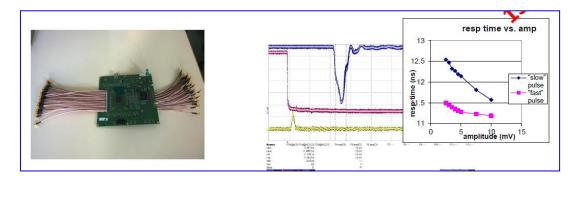
Low resistance RPCs for high rates




First AIDA2020 annual meeting

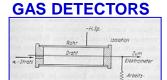
Fast timing RPCs

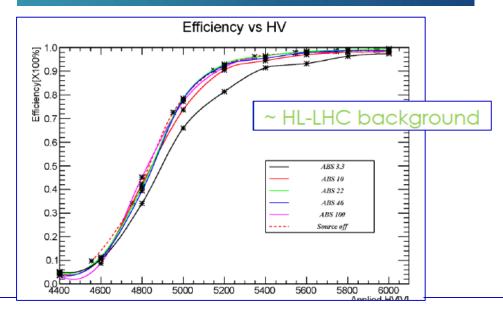

Fast timing (M)RPC

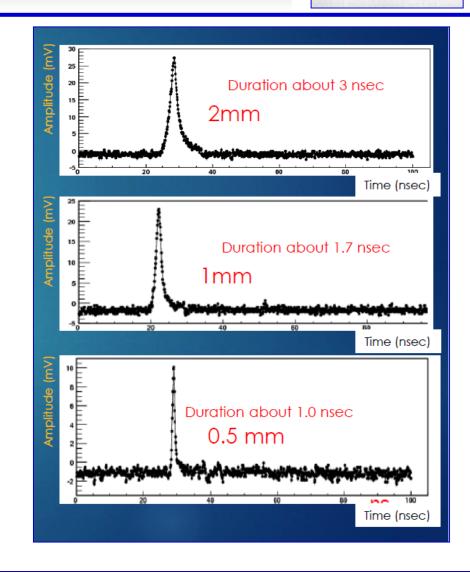

read out by **PETIROC** channels and then **Tsinghua TDC**.

Reading out the strips at the 2 ends

- 1. Resolution includes ~ 1.1 cm error from the scintillator (~80 ps quadratically)
- 2. No cluster analysis, it should also improves the resolution (to be divided by sqrt(C))


Evaluation of the PETIROC ASIC




ANOTHER INGREDIENT TOWARDS HIGH RATES

► Thinner gas gaps for higher rate and time resolution →

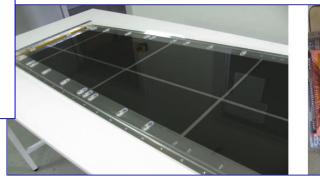
Tested 1.2 mm and 0.8 mm
New materials for the electrodes under study (phenolic glass)

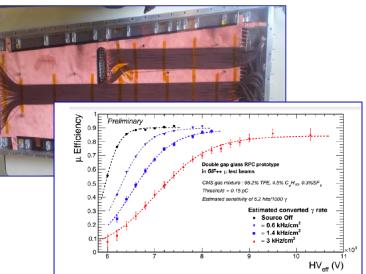
4-7/4/2017

First AIDA2020 annual meeting

SDT, IL

10


LARGE SIZE RPCs



Towards large size also with new low R materials:

 Enginering mosaictype layers (gas tight!)

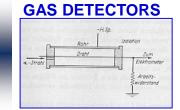
Pre

Triplet of new RPCs with 1mm gas gap in support frame and Faraday cage of 48 mm overall thickness → fits into assigned 50 mm envelope.

Preparation for Assembly of Large Chambers

Dedicated large-size clean room with specific equipment

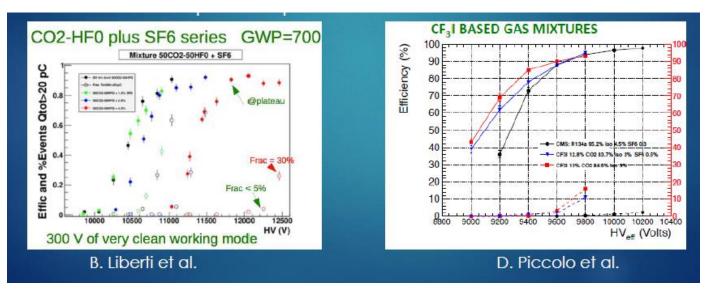
11


INFN

4-7/4/2017

First AIDA2020 annual meeting

ECO-FRIENDLY GASSES

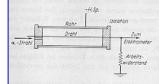


Problem: GWP is too high for R134A (1300) and SF6(24000). CO2 GWP is 1

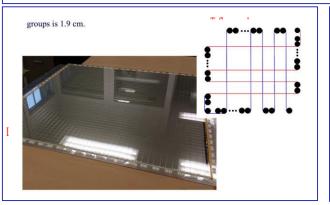
State of the art:

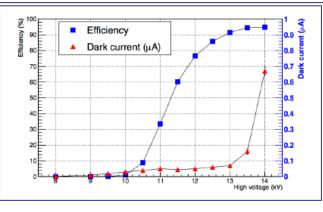
• "new RPC gas mixtures for large area apparatuses" Presented at RPC14 workshop by B. Liberti and Published on JINST: R. Cardarelli et al. JINST 9 C11003 doi:10.1088/1748-0221/9/11/C11003

 "A study of HFO-1234ze (1,3,3,-Tetrafluoropropene) as an eco-friendly replacement in RPC detectors.: L.Benussi et al. http://arxiv.org/abs/1505.01648


HFO=1234ze (1,3,3,3-Tetrafluoropropene) has been identified as a possible choice

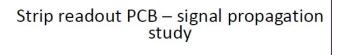
First AIDA2020 annual meeting

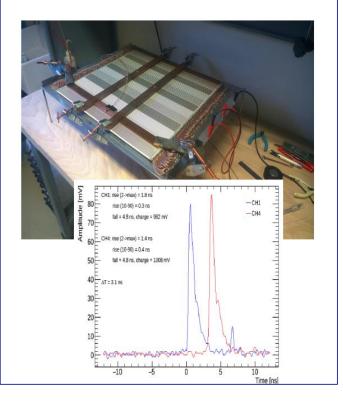



LARGE PRODUCTION, ENGINEERING PHASE

GAS DETECTORS

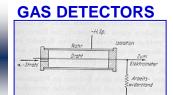
Several Multi-gap detectors were designed and built . Excellent efficiency when tested with HARDROC ASICs


A new PCB with pickup pads read out with PETIROC was developed and used to test timing of small MRPC



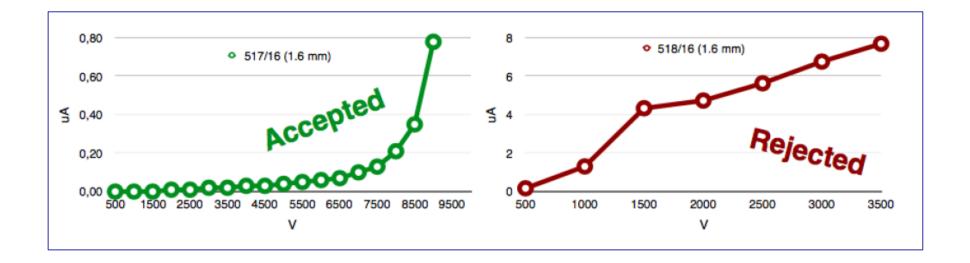
→ Petiroc2 testboard

MRPC with 32 1 cm x1 cm pads.

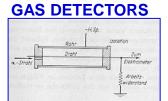


4-7/4/2017

First AIDA2020 annual meeting

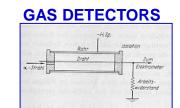


LARGE PRODUCTION, QC

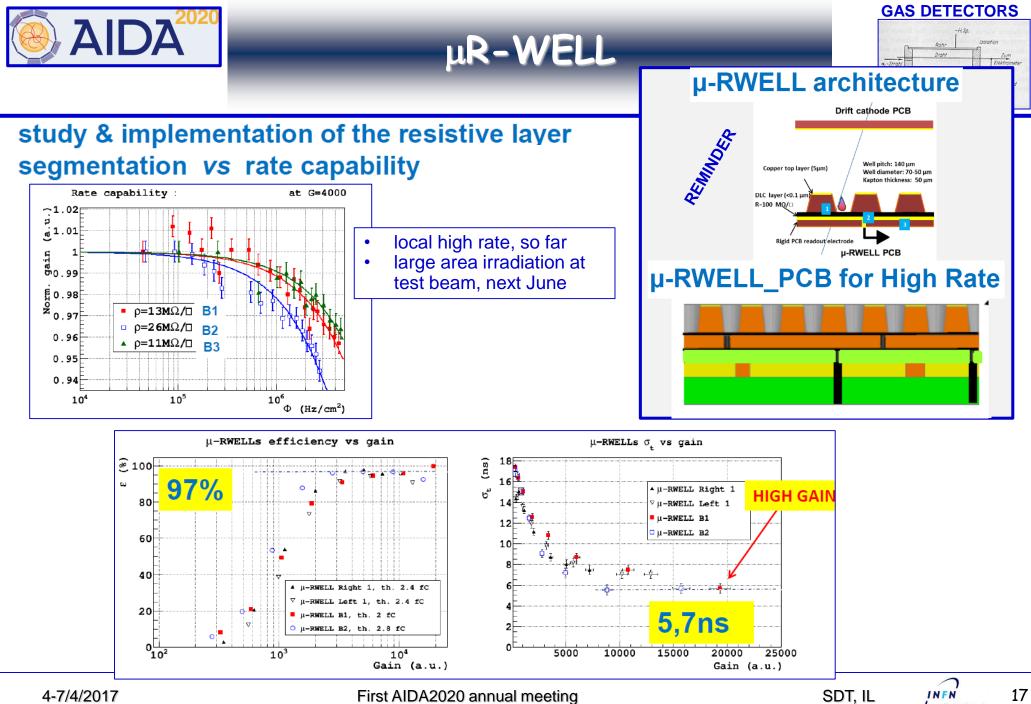


Detector quality control:

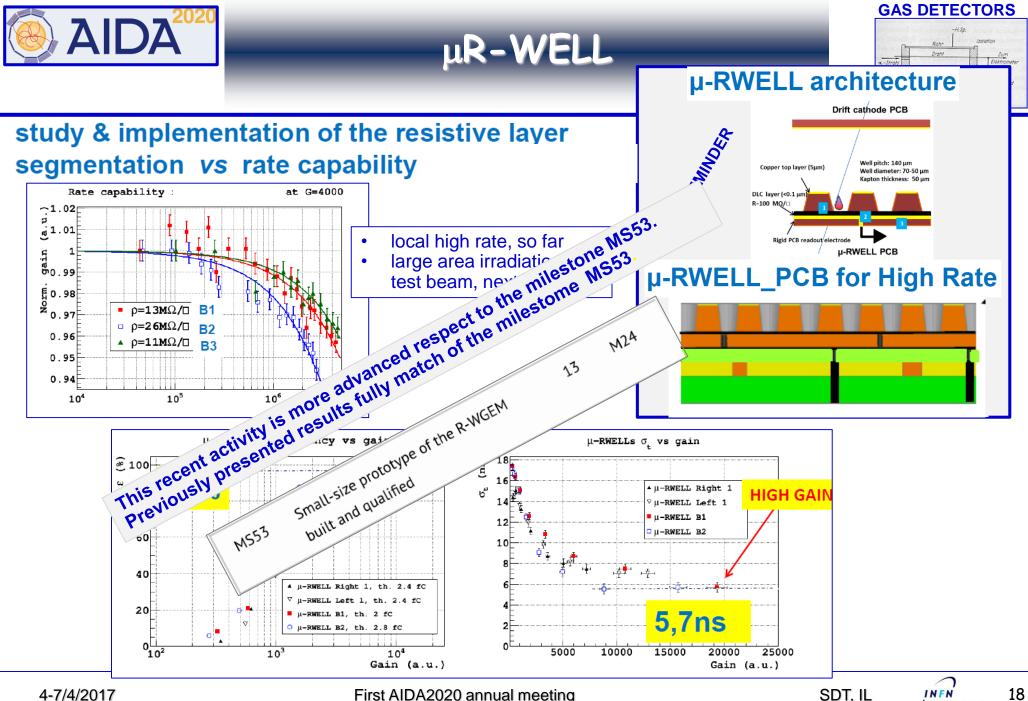
- Measurements of the electrode resistivity
- Control of the gap production



MPGDs


what is strategic and how WP13 answers to the quest

- Novel architectures
 - Finer time resolution
 - Finer space resolution
 - Higher gain
 - Higher rate capability
 - Simplified construction
- Tools for lab and experiments
- Quality Control
- Large production and TT
- Applications beyond science

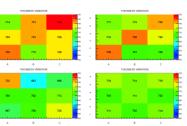

TASKs 1.2.4, 1.2.5 TASKs 1.3.1, 1.3.2, 1.3.3 TASKs 1.4.3, 1.4.4, 1.4.5 **TASKs 1.4.2, 1.4.7** TASKs 1.2.4, 1.2.5, 1.4.3, 1.4.4, 1.4.5, 1.4.2, 1.4.7

4-7/4/2017

First AIDA2020 annual meeting

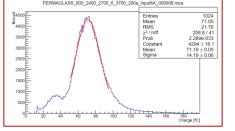
First AIDA2020 annual meeting

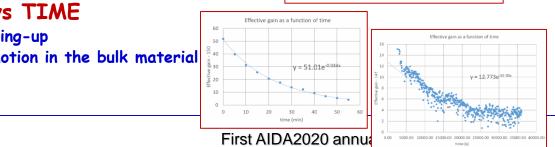
HIGH GAIN MPGD

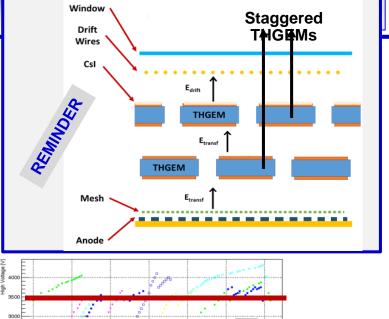


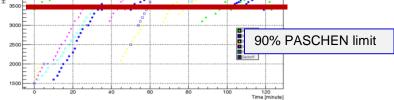
THGEMS by Permaglas ME730

by **RESARM** Engineering Plastics SA


Raw material characterization Nominal thickness 0.7 mm *I*Δ*I* < 4%; σ < 2% Nominal thickness 1 mm *I*Δ*I* < 2%; σ < 1%




- Electrostatic properties by Paschen test
- GAIN UNIFORMITY SCAN: o: 13%
- ENERGY RESOLUTION: 20 %



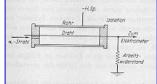
- Charging-up
- Ion motion in the bulk material

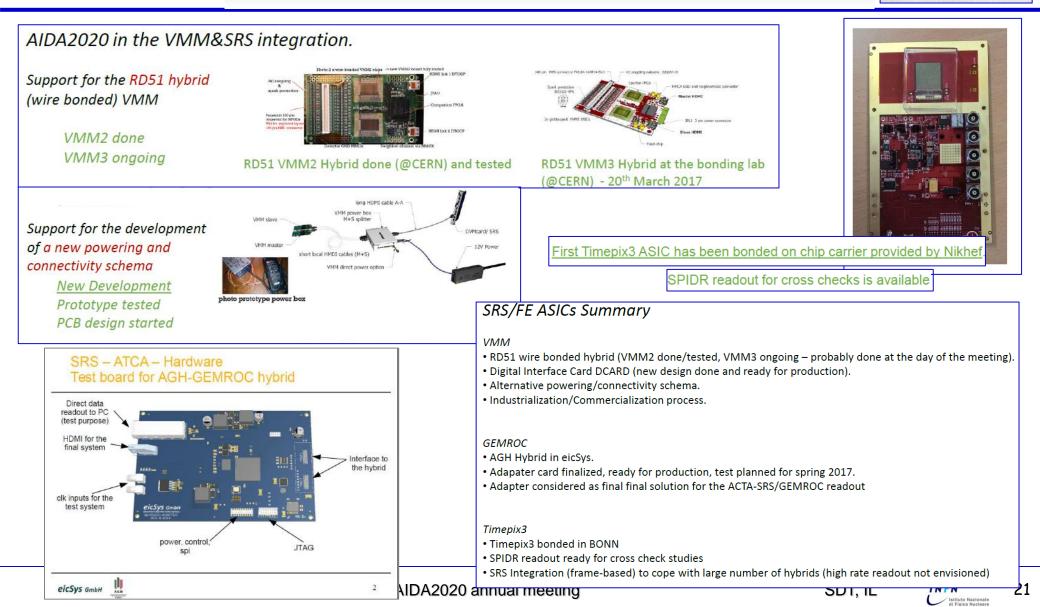
Conclusions:

- **Robust material, remarkable** uniformity performance
- Easy to operate and limited gain dependence vs time
- Good potentialities for high gain multilayer devices
- Interesting as a replacement for THGEM by etchableglass approaches: much cheaper !

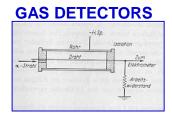
SDT, IL

4-7/4/2017





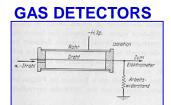
INTEGRATION OF FE-chips IN SRS



DEVELOPMENT OF MPGD-dedicated ELECTRONIC TOOLS

	Task 13.3.2
Deliverable	High Voltage Power Supply
[M24]	for MPGD

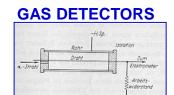
High Voltage for MPGDs: AIDA2020 Deliverable [M24]

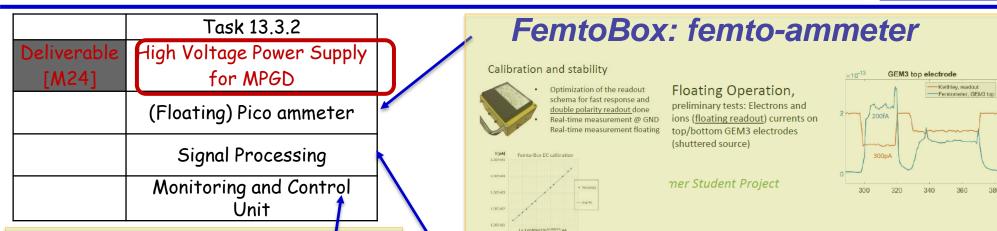

Compact MPGD HV power supply: The desktop AVD is a <u>remotely controllable</u>, <u>compact</u> HV power supply for the operation of MPGD based detectors with <u>up to nine user-defined fields</u>. Specially designed for the operation of gaseous detectors, this supply includes <u>active field</u> <u>stabilizers to compensate for dynamic loads</u> and <u>circuitry to protect from short circuits and sparking</u>. The <u>embedded control and monitoring</u> <u>system</u> supervises all parameters and, associated with <u>online Labview software</u>, records and displays trending data of all HV channels. The <u>front panel controls</u>, <u>combined with a status display</u>, <u>allow for local operation</u>. The NIM-AVD unit will be fully contained within a <u>dual-sized NIM</u> <u>module</u> and, via a power adapter, it can be operated as desktop MPGD supply without NIM crate.

22

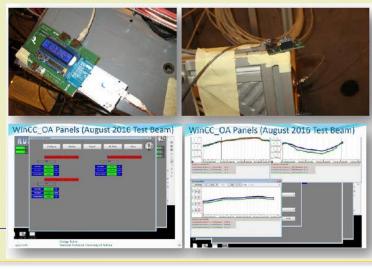
DEVELOPMENT OF MPGD-dedicated ELECTRONIC TOOLS

4-7/4/2017


First AIDA2020 annual meeting


SDT, IL

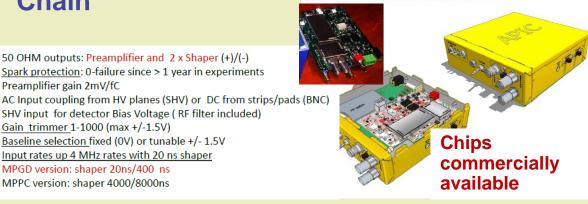
23



DEVELOPMENT OF MPGD-dedicated ELECTRONIC

Microcontroller of environmental parameters: Present version WIN CC OA Next version: Raspberry Pi

APIC: Charge Preamplifier - Shaper Amplifier Chain


50 OHM outputs: Preamplifier and 2 x Shaper (+)/(-)

Spark protection: 0-failure since > 1 year in experiments

SHV input for detector Bias Voltage (RF filter included)

Baseline selection fixed (0V) or tunable +/- 1.5V Input rates up 4 MHz rates with 20 ns shaper

Prototyping completed (all components commercially available - nothing custom), Ready for industrialization/commercialization

AIDA2020 annual meeting

Preamplifier gain 2mV/fC

Gain trimmer 1-1000 (max +/-1.5V)

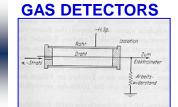
MPGD version: shaper 20ns/400 ns

MPPC version: shaper 4000/8000ns

٠

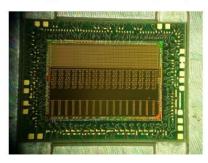
•

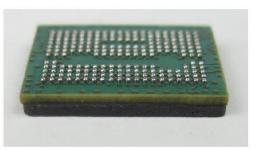
٠


٠

SDT, IL

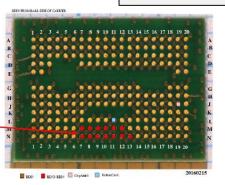
24

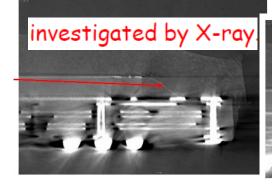


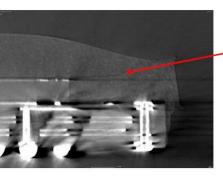

Development of a general purpose readout <u>electronics for MPGDs</u>

Chip SALTRO16 ASIC

 \Rightarrow Develop a carrier board (Lund) onto which the die could be mounted.



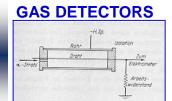



Status summary

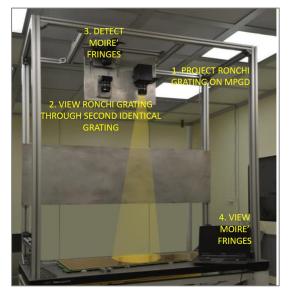
- The packaging of the SALTRO16 ASIC:s is underway.
- Delivery expected mid June.
- The design of the Development Board is ready
- A first version of the DAQ system enables readout of data

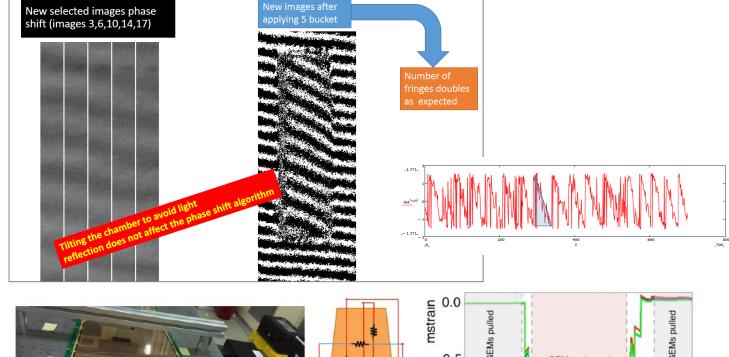
- After bonding of the die tests were performed and all connections were there.
- After application of the epoxy glob and the tin balls the connections were tested again and everything was ok.
- After soldering onto an adaptor board, for characterization, some connections were lost.

Cracks in the epoxy (red arrows) and air bubbles (green arrows).

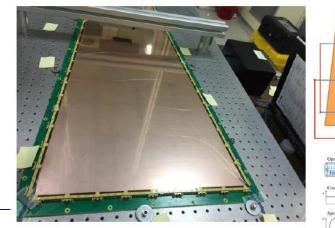

> NOW smaller packing possible To avoid carrier difficulties: Chips at NOVAPACK

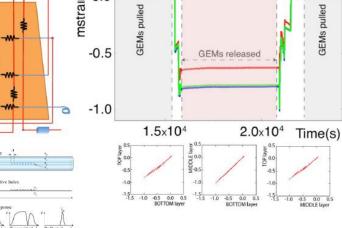
INFN


First AIDA2020 annual meeting

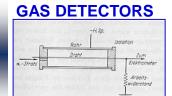


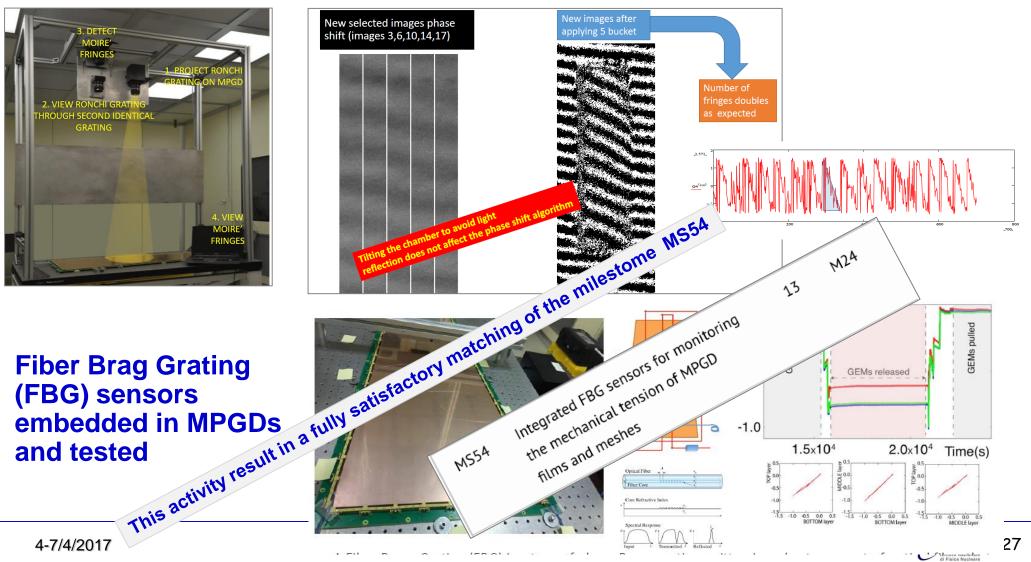
QA: Control of foil/micromesh mechanical tensioning



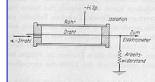

Moiré fringe interferometry ON LARGE SIZE, engineered \rightarrow resolution: 31 μ m

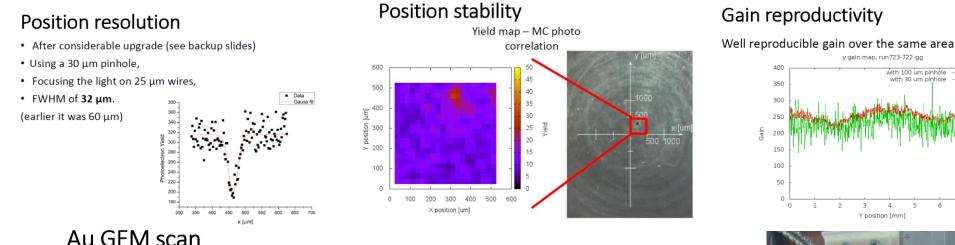
Fiber Brag Grating (FBG) sensors embedded in MPGDs and tested



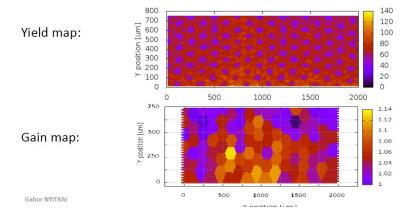

4-7/4/2017

QA: Control of foil/micromesh mechanical tensioning

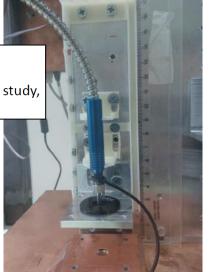

Moiré fringe interferometry ON LARGE SIZE, engineered \rightarrow resolution: 31 μ m



QA: Leopard scanning system for THGEMs/GEMs


GAS DETECTORS

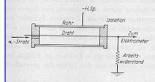
Small size prototype of optical / gain scanning, high resolution



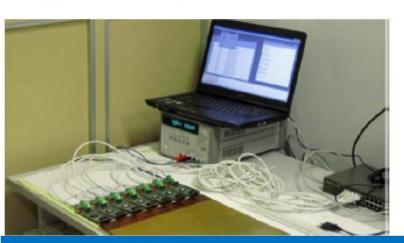
- Gold plated normal GEM (140 μm pitch, 60 μm dia. holes, 70 μm thickness)
- Scan time approx. 100 min.

Deuterium lamp

- 30W Newport 68942 Deuterium lamp under study,
- Self-trigger operation implemented.


First AIDA2020 annual meeting

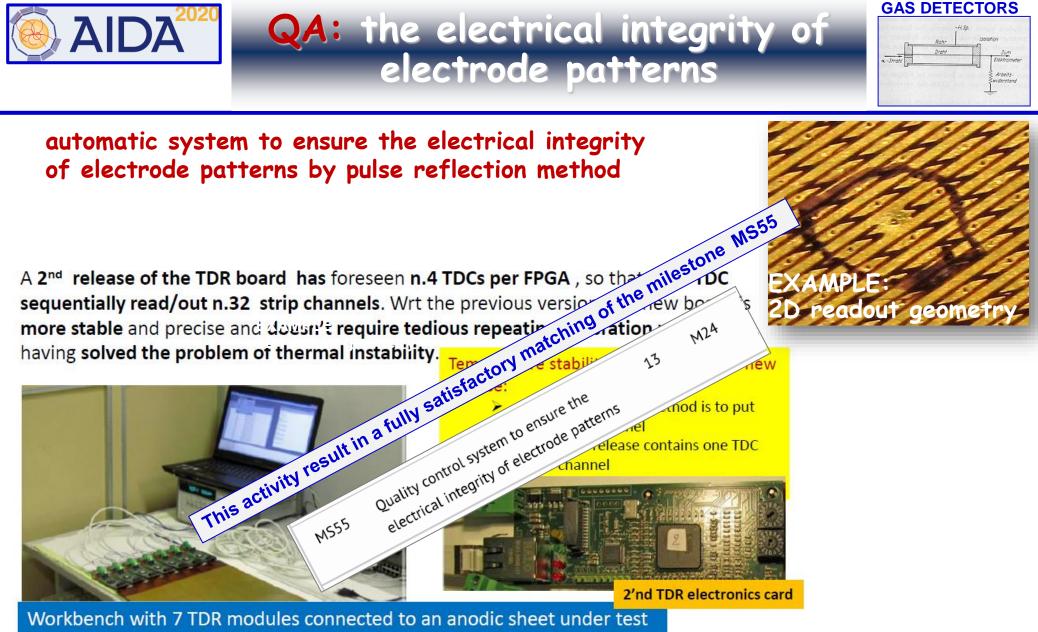
INFN Istituto Nazional


QA: the electrical integrity of electrode patterns

automatic system to ensure the electrical integrity of electrode patterns by pulse reflection method

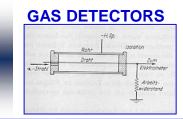
A 2nd release of the TDR board has foreseen n.4 TDCs per FPGA, so that each TDC sequentially read/out n.32 strip channels. Wrt the previous version, the new board is more stable and precise and doesn't require tedious repeating calibration procedures, having solved the problem of thermal instability. Temperature stability issue solved with new

release:

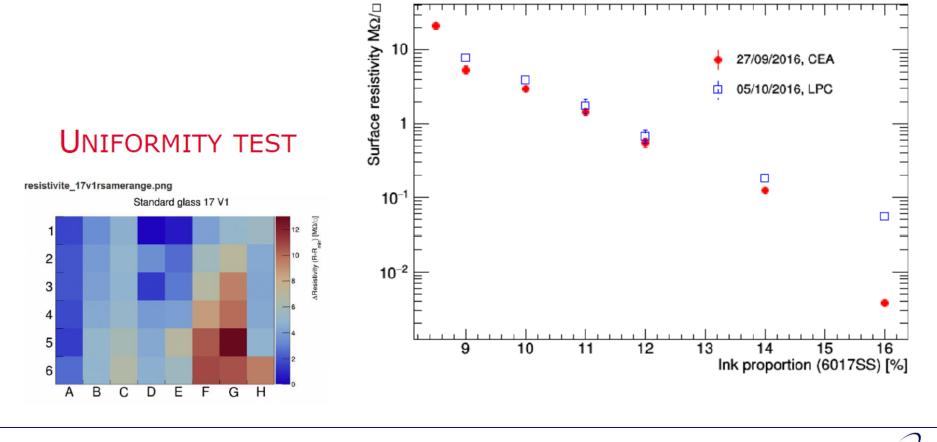

- The only reliable method is to put one TDC/channel
- The new release contains one TDC per channel

Workbench with 7 TDR modules connected to an anodic sheet under test and through Ethernet to PC for logging and control

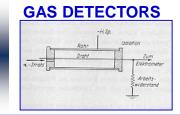
XAMPLE

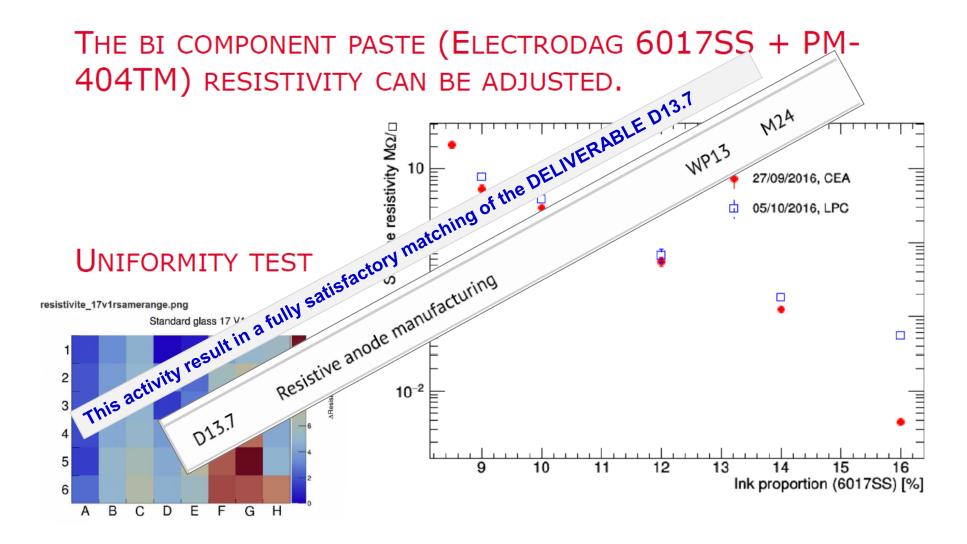

and through Ethernet to PC for logging and control

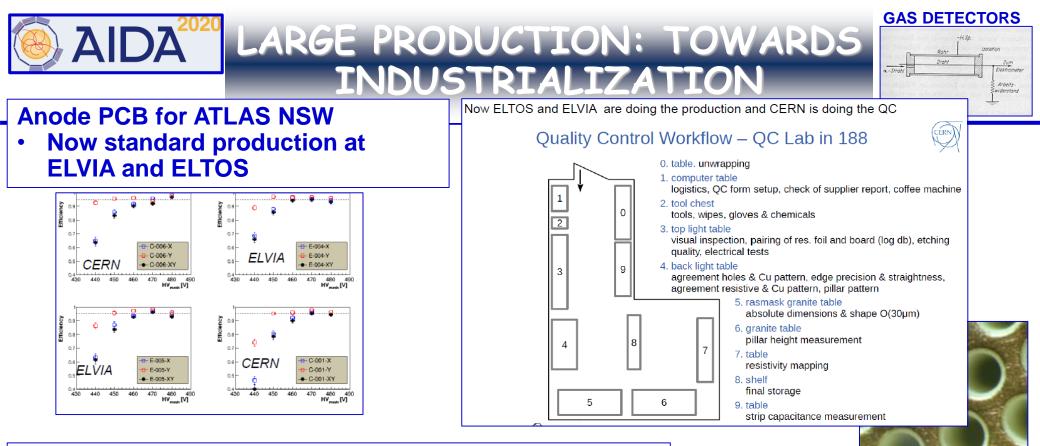
4-7/4/2017


First AIDA2020 annual meeting

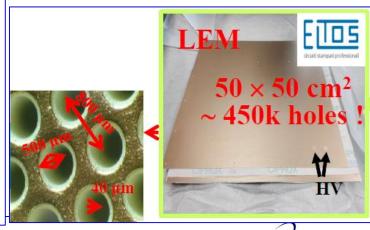
LARGE PRODUCTION: RESISTIVE LAYERS




THE BI COMPONENT PASTE (ELECTRODAG 6017SS + PM-404TM) RESISTIVITY CAN BE ADJUSTED.



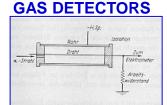
LARGE PRODUCTION: RESISTIVE LAYERS



THGEM INDUSTRIAL TRANSFER

First example: THGEM for COMPASS RICH produced by ELTOS 30x60 cm², thickness 0.4 mm Hole pitch 800 µm and diameter 400 µm, no rim

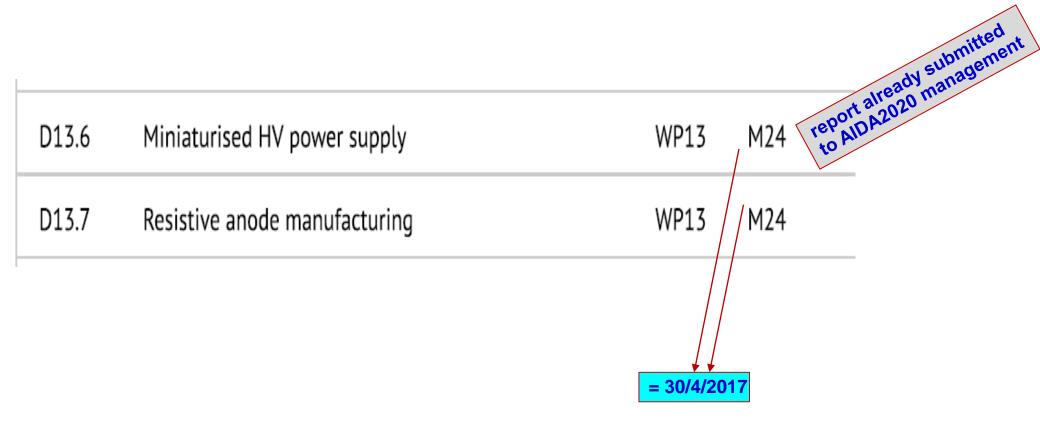
Large production of THGEM (LEM) for WA105, Both ELTOS and ELVIA production satisfactory



4-7/4/2017

First AIDA2020 annual meeting

33


MANAGEMENT ADMINISTRATIVE ASPECTS

First AIDA2020 annual meeting

DELIVERABLES, NEXT MONTHS

INFN

GAS DETECTORS

Arbeits

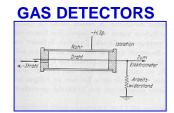
MILESTONES, NEXT MONTHS

MS52	High-rate RPC prototype ready	13	M24	report already submitted to AIDA2020 management
MS53	Small-size prototype of the R-WGEM built and qualified	13	M24	
MS54	Integrated FBG sensors for monitoring the mechanical tension of MPGD films and meshes	g 13	M24	= 30/4/201
MS55	Quality control system to ensure the electrical integrity of electrode patter	13 rns	M24	report already to be submitted to AIDA2020 management
MS61	Qualification of the new 13 candidate materials	M26 —		→ = 30/6/2017

<u>REMINDER:</u> Milestone successfully matched (1 May 2016)

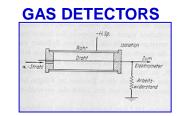
MS13	Specification of systems	14	M12	29/04/2016	Achieved	<u>Report</u>
	for highly					(http://cds.cern.ch
	granular scintillator tests					<u>/record/2153646)</u>

First AIDA2020 annual meeting


INFN Ustituto Nazionale di Fielda Nucleare

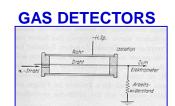
GAS DETECTORS

-fi.5p. Invarion a.-Strait Arbeitsevidentiand


WP13 papers (Dec. 2016)

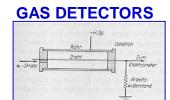
- 2 The μ-RWELL: "A compact, spark protected, single amplification-stage MPGD", Nucl. Instr. & Meth A 824 (2016) 565.
- 3 M. Alexeev et al., "The gain in Thick GEM multipliers and its time-evolution", 2015 JINST 10 (2015) P03026.
- A M. Alexeev et al., "Status of the Development of Large Area Photon Detectors based on THGEMs and Hybrid MPGD architectures for Cherenkov Imaging Applications", Nucl. Instrum. Meth. A824 (2016) 139.
- 5 S. Dalla Torre, "The brilliant present and the promising perspectives of the Micropattern Gaseous Detectors", Nuclear Physics News, Vol 26 (2016), no 3.
- L. Benussi for the CMS GEM collaboration, « A novel application of Fiber Bragg Grating (FBG) sensors in MPGD », arXiv:1512.08529 [physics.ins-det] INFN-15-10-LNF To be published in JINST (http://cds.cern.ch/record/2118619)

SURVEY of RESOURCES



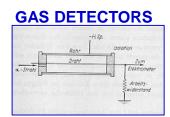
third survey with <u>confirmation</u> of previous indications (previous surveys on 4/6/15, on 15/6/16)

- Manpower available for the various activities
 - No critical issue detected
- <u>Complementary</u> (respect to EC contribution) <u>financial</u> <u>resources</u> for equipment and consumables:
 - In general they look available
- Laboratory infrastructures
 - Adequate labs and related equipment available (all partners)



Coordination strategy and its implementation:

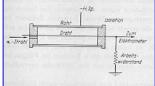
- Close activity monitoring by <u>regular meetings</u>
 - □ <u>In the last year</u>: 20/1/2017, 5/4/2017
- Help line:
 - The task coordinators are invited to promptly contact the WP coordinators if difficulties arise (technical, financial, manpower)
 - No need in the past year
- Facilitate the integration of the community:
 - facilitate the implementation of all potential <u>synergies</u> also between the different technologies
 - Several appearing: resistivity, screen printing and sputtering, foil planarity, lab equipment, novel eco-friendly gas mixtures, ...
 - WP13 meetings useful also from this point of view


WP13 MANAGEMENT

WP13 within AIDA2020

- 2 reports (talks) by WP13 at the AIDA2020 Steering Committee meetings
 - On 23/9/2016
 - On 2/2/2017
- Written periodical reports
 - P1 report (18 months); WP13 contribution sent to management on 5/12/2016
 - WP14 mid term report (2 years): WP13 contribution sent to management on 28/3/2017
- Synergies with WP4 (Micro-electronics)
- Possibility of synergies with WP8 (Large scale cryogenic liquid detectors)
- Arising synergies with WP2 (Innovation and Outreach)
 - related to WP13 dedication to TT

- WP13 : 20 groups from 13 different Institutions
 - AIDA2020-WP13 is cultural common house for the gas detector community in Europe
- All the activities (tasks) are progressing well and there is no delay respect to the foreseen planning
 - For both technologies: RPCs and MPGDs
 - Activity progress also tested by <u>matching</u> DELIVERABLES and MILESTONES:

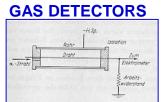

In WP13 so far: 2 deliverables, 6 (1+4+1) milestones

- Resources available as required by the work planning
- Some examples of novel investigation domains originally not foreseen: vitality !
- Synergies with different WPs within AIDA2020 also present:
 - There is space to improve further

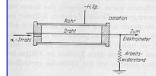
<u>Advertisement</u> :

MPGD2017 - 5th international Conference on MPGDs

- at Temple University (Philadelphia)
- May 2017


It follows:

- MPGD2009, Kolympari-Crete, Greece
- MPGD2011, Kobe, Japan
- MPGD2013, Zaragoza, Spain
- MPGD2015, Trieste, Italy


BACK-UP

WP13, SCIENTIFIC ASPECTS

		1							
			respon					_	
			sible	partner			synergies	synergies	
	Task 13.2 Advanced detector		Institut	institutions in	other		within	within	external
TASK no	developments	coordinator	ion	AIDA2020	partners	key-words	WP13	AIDA2020	synergies
				IN2P3-Lyon,					
				INFN-Bari, INFN-			3 other		
				LNF, IN2P3-			tasks:		
	Establishing new resistive			Clermont-	GWNU	novel low-resistivity	13.2.2,13.2		
13.2.1	materials for high rate RPCs	Paulo FONTE	LIP	Ferrand	(Korea)	materials, high-rates, ageing	.3, 13.4.6		LH-LHC
				IN2P3-OMEGA,			4 other		
				INFN-Bari, IN2P3			tasks:		
				Clermont-			13.2.1,13.2		LH-LHC,
	Development of fast-timing	Imad	IN2P3-	Ferrand, INFN-	GWNU	Large-size, time resolution	.3, 13.4.1,		muon
13.2.2	large RPCs	LAKTINEH	Lyon	Bologna	(Korea)	O(100ps), fast FE interfacing	13.4.6	WP4	tomograph
							4 other		
							tasks:		
	High-rate and fine space			INFN-LNF, CERN,		Eco-gasses, fine-space	13.2.1,13.2		
	resolution RPCs operated with	Giulio	INFN-	INFN-Bari, MPI,	GWNU	resolution O(100um), high	.3, 13.4.1,		
13.2.3	eco-gases	AIELLO	тоу	INFN-Torino	(Korea)	rates	13.4.6		LH-LHC
						High-gain (O(10^5)),			
						resistive read-out plane, high			
						rates, simplified construction			
	Development of the Resistive-	Giovanni	INFN-			technology, fine space and	task:		RD51, LH-
13.2.4	WELL GEM detector (R-WGEM)	BENCIVENNI	LNF	INFN-Bari		time resolution	13.4.5		LHC
	. ,						4 other		
						hybrid architecture (THGEM,	tasks:		
						Micromegas), high-gain	13.3.1,		
	Development of high-gain					(O(10^6)), THGEM	13.3.2,		
	MPGDs based on advanced	Silvia DALLA	INFN-				13.4.4,		
13.2.5	THGEMs and hybrid MPGDs	TORRE	Trieste			detection	13.4.7	WP8	RD51

4-7/4/2017

First AIDA2020 annual meeting

SDT, IL

44

INFN Istituto Nazionale di Fisica Nucleare

WP13, SCIENTIFIC ASPECTS

	-H	Sja.
~	Rohr	Isolation
	Draht	- Zum
		Elektromete

TASK no	Task 13.3 Tools to facilitate the detector development	coordinator	Institut	partner institutions in AIDA2020	other partners	key-words	synergies within WP13	synergies within AIDA2020	external synergies
	Interfacing FE-chips specific to gas detectors to the Scalable	Eraldo		AGH Krakow,		interfacing FE chips: VMM,	2 other tasks: 14.2.4,		RD51, LH-
13.3.1	Readout System (SRS) Development of cheap, standard MPGD dedicated laboratory instruments	OLIVERI Eraldo OLIVERI	CERN	Bonn U CERN, INFN- Trieste, Wigner, CEA-Saclay		GEMROC, Timepix3 Compact High Voltage Power Supply for MPGDs, fempto- pico ampermeter, singnal processing, regenerationg gas systems	2 other tasks: 14.2.4, 14.2.5		LHC RD51
13.3.3	PCB development using HDI- technology and 3D-mounting of chips for MPGD readout	Leif JOENSSON	LUND U	CERN		HDI (High Density Interconnect) technology for 3D mounting of FE chip (MPGD R-O), high channel density, reduced material budget	3 other tasks: 13.2.3, 13.4.2, 13.4.8		CLIC, ILC

INFN

/ Istituto Nazionale di Fisica Nucleare

~								GAS		ORS
			respon							
			sible	partner			synergies	synergies		nipn Zum
	Task 13.4 Preparation for large			institutions in	other		within	within	external	Zum Elektrometer
TASK no	series production	coordinator	ion	AIDA2020	partners	key-words	WP13	AIDA2020	synergies	Arbeits- Ewiderstand
							2 other			
	Large-size RPC detectors					mechanical precision for	tasks:			
	preserving mechanical	Hubert		INFN-TOV, INFN-		large-size detectors (both	13.2.2,			
13.4.1	precision	KROHA	MPI	Bari, CEA-Saclay		technologies)	13.2.3		LH-LHC	
						resistive MICROMEGAS by				
						1 0/1 0/	2 other			
	Establishing procedures and					painting, film lamination,	tasks:			
	tools for large series resistive		CEA-			Argon	13.2.5,		RD51, LH-	
13.4.2	MICROMEGAS anodes	Paul COLAS	Saclay			Unostar E printing machine	13.4.7		LHC	
							3 other			
						flatness of MPGD	tasks:			
	Control of foil/micromesh					foils/meshes, assembly,	13.2.5,			
	mechanical tensioning by	Luigi	INFN-	INFN-Bari, INFN-			13.4.2,			
13.4.3	optical techniques	BENUSSI	LNF	Bologna		Bragg grating	13.4.7		LH-LHC	
						high resolution gain maps				
						, , ,	2 other			
						THGEMs); quality control,	tasks:			
12.4.4	Quality control tool for detailed		Wigner			correlation with optical	13.2.5,			
13.4.4	gain maps (hole by hole)	VARGA	RCP	INFN-Trieste		inspection	13.4.7		RD51, LHC	
	Design of a quality control						2 other			
	system to ensure the electrical	Antonio				ELECTRICAL INTEGRITY OF	tasks:			
12.4.5	integrity of electrode patterns	Antonio	INFN-			MPGD READOUT PLANES,	13.2.4,		RD51, LH-	
13.4.5	by pulse reflection method	Ranieri	Bari	INFN-LNF		FPGA-based system	13.4.7 3 other		LHC	
							tasks:			
	Production protocols of			INFN-TOV,			13.2.1,		HL-LHC, ILC,	
	optimised RPC components for	Cabriella	INFN-	IN2P3-Lyon, LIP,		protocol of large series	13.2.2,		CBM,	
13.4.6	easy technology dissemination	PUGLIESE	Bari	MPI		production of RPCs	13.2.2,		applications	
13.4.0	Standard production protocols	FUULILISE	Dali			production of Kres	2 other		applications	
	of optimised MPGD					bulk MICROMEGAS, resistive			RD51, LH-	
	components to facilitate		CEA-			layers, multilayer stacking,	13.2.5,		LHC, ILC,	
 13.4.7	technology dissemination	Paul COLAS		CERN		read-out schemes	13.4.2		applications	
4- 7 /4/20				2020 annual m	eetina	read-out schemes		DT, IL	INFN	46
		1			5501.9		0.	.,	Istituto Nazionale di Fisica Nucleare	