

Advanced European Infrastructures for Detectors at Accelerators

Summary of WP7 activities

Anna Macchiolo, Iván Vila

Paris, 2nd AIDA-2020 Annual Meeting, 07.04.2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168.

Overview: Tasks

Device Simulation

- Layout optimization.
- Radiation damage modeling
- Optimization signal multiplication structures.

- Development & improvement of manufacturing processes for planar, 3D and LGAD devices.
- MPWR for thinned 3D and slim/active edge planar.

tituto Nazionale Planck-Institut

Detector performance assessment

- Hybrid thin planar & 3D pixels for HL-LHC environment.
- Very small size and thin pixel sensors for CLIC.
- Low Gain Avalanche Detectors for timing and tracking

Approaching WP7 Deliverables

	Deliverable	Responsible Group	Month due
	D7.1 Simulation of 3D pixel sensor cells	INFN	M18 (OCT 2016)
	D7.2 Simulation active edge	CERN	M18 (OCT 2016)
	D7.3 LGAD simulation	INFN	M18 (OCT 2016)
	D7.4 TCAD model radiation damage	INFN	M46 (MAR 2019)
\longrightarrow	D7.5 Wafer Layout MPW run WP7	CSIC	M30 (NOV 2017)
	D7.6 Initial pixel characterization	UNIMAN	M24 (APRIL 2017)
	D7.7 Final pixel characterization	MPG-MPP	M46 (MAR 2019)
	D7.8 LGAD characterization	INFN	M46 (MAR 2019)

 D7.6 Based on devices from previous non-AIDA funded runs & WP7 2016 test beam results→ report is being circulated within WP7

Coming Milestones

• Dedicated workshop on the three sensor technologies (MS49, MS50) as full-day satellite meeting after the Trento Workshop (23th February)

		1		L
MS49	Workshop on 3D- planar (Workshop among project participants and external experts on technological choices for structured wafers and pixel sensor designs for new common productions, Task 7.3)	16 - FBK	24	Agenda, attendance list on Indico
MS50	LGAD thickness technological choice (Technological choice of optimal thickness for LGAD sensors to be used for high rate applications and for very accurate timing, Task 7.3)	24 - CSIC	24	Report to StCom
MS51	LGAD Workshop on the characterisation results of the available LGAD sensors(Workshop among project participants and external experts on the characterization results of the available LGAD sensors and discussion on future common productions,Task 7.5)	17 - INFN	24	Agenda, attendance list on Indico

Common sensor productions

At least three common productions foreseen in WP7, one for each technology

- Processing of MPWR for 3D and planar pixel sensors on thinned substrates, compatible with the RD53 chip
- Common submission of LGAD sensors
 - Prototyping of LGAD sensors on thin substrates, down to a bulk thickness of 50 μm

Deliverable	Responsible Group	Month due
D7.5 Wafer Layout MPW	CSIC	M30 (OCT 2017)
Milestone	Responsible Group	Month due
MS87 MPW runs completion	CSIC	M42 (OCT 2018)

3D production at FBK starting 1st QT of 2017

3D production at CNM beginning this week.

In the second half of 2017 → trying to achieve MS87 ahead of time Active edge production at FBK LGAD production at CNM

WP7 3D production at CNM

- 4" 200 μm thick wafers with double sided technology (developed and adopted for IBL), production started and due in Q4 2017
- Hole diameter 8 μm
 - Mainly RD53 chip compatible sensors (pitch 50x50 μm²):
 - 10 RD53 50x50um² 1E
 - 6 RD53 25x100um² 1E
 - 4 RD53 25x100um² 2E
- Temporary metal for Quality Assurance before UBM and flip-chipping

3D at CNM: 50x50 μ m² cells

3D at CNM: 25x100 μ m² cells

3D sensors at FBK

Single-sided process

- "Thin" active layer (130 Pm): Si-Si or SOI
- Ohmic columns depth > active layer
- Junction columns depth < active layer
- Column diameter ~ 5 um
- Holes partially filled with poly
- Very slim edge (100 Pm)

A. Macchiolo and I. Vila, WP7 Summary, 2nd AIDA-2020 Annual Meeting

SiO₂

WP7 3D production at FBK

RD53 sensors - FBK

50x50 μm^2 can be designed with relaxed distances between bump and columns

 $25x100 \ \mu m^2$ can be difficult in 2E configuration:

Place bumps on ohmic column
Study radiation hardness of 1E configuration

AIDA²⁰²⁰ FBK

- 12 wafers on Si-Si and SOI material
- Staggered trenches
- Wafers now at IZM for interconnection

WP7 Edgeless production at FBK

- Continuous trenches Width < 10 um
- SOI (preferred) or Si-Si wafers with 100 and 130 µm thickness
- Poly-silicon filling
- Substrates thinning leads to structure separation

WP7 Edgeless production at FBK

- Choice of "grid" or "island" layout
- Grid layout probably easier to make the structures separate from each other during carrier thinning
- Island layout helps to avoid problems at the crossing points between trenches
- Local increase of DRIE etching rate and enlargement of the trench that is then problematic to fill

LGAD sensors for timing

Previous studies demonstrated the LGAD gain reduction when fluence increases.

- There is no gain for fluences higher than $2 \cdot 10^{15} n_{eq} / cm^2$
- Gain degradation described by acceptor removal mechanism → electrical deactivation of the Boron dopant and reduction of the multiplication layer electric field due to the trapping of thermal carriers in radiation induced traps
- Several mitigation strategies: thinner bulk works, Gallium doping does not improve

WP7 LGAD production at CNM

- At 2e15 the LGAD charge collection is very similar to pin diodes
- Gain coming from multiplication effects in the bulk (impact ionization) become important
 - Common WP7 production aims to investigate thinner bulks to enhance the multiplication effects after irradiation (higher fields in thinner sensors)
 - 50 um active thickness as reference
 - Thickness around 30 um to investigate possible improvements in radiation hardness → precise target thickness to be determined with simulation at CNM

WP7 LGAD production at CNM

- Insert matrix of diodes: with various sizes 1x1 mm², 2x2 mm² pads to study edge termination.
- Reduce feature size of p-stop and JTE in the inter-pad region to reach >95% area where multiplication can take place

• Insert long/short strips to investigate the feasibility of achieving an ultra low material budget tracking + timing

Results of prototype characterization

AIDA Planar sensors with active edges for CLIC

Timepix3 assemblies (55x55 um² pixel cells)

► 50 µm thick, 20-noGR

50 um thickness 20 um edge

► 50 µm thick, 28-groundGR

Floating guard-ring

 \blacktriangleright 50 µm thick, 55-groundGR

50 um thin ADVACAM sensors with active edges assembled to CLICpix chip (25x25 μm²)

- Expected resolution achieved close to digital one because most of the clusters are 1-hit
- Fast decrease of the efficiency with the threshold
- Lower threshold expected with new chip CLICpix2, 128x128 matrix, 25 um pitch

AIDA²⁰²⁰ Thin planar sensors after irradiation

• Comparison of hit efficiencies after an irradiation to $1 \times 10^{16} n_{eq}/cm^2$ shows an earlier hit efficiency saturation for the module with 100 µm thick sensor compared to the CIS module with a 150 µm thick sensor.

 Lower operation bias voltages at high fluence results in lower power dissipation and help to relax the requirements on the cooling system

Thin 3D sensors evaluation

3D 130 μm thin sensors with 2E and 3E configuration – FBK production

- Hit efficiency of 3D 130 µm thin sensors with 3E configuration
- Interconnected to CMS pixel chip PSI46dig
- 30V bias voltage

Angle (degrees)	Efficiency 3E	Efficiency 2E
0	99.27%	99.45%
5	99.77%	99.85%
10	99.88%	99.87%
$\max \Delta$ Efficiency	0.62%	0.43%

nitch (um)

2E

3D 130 μ m thin sensors

300

Interconnected to CMS pixel chip PSI46dig

Only one out of 6 • columns is read-out while the others are grounded

No striking differences among the three 25µm pitch 3D prototypes, all of them behaving well

 3D 50x50 µm² pixel cells produced at CNM where the junction columns are shorted through a metal line

AIDA

 Read-out through the Beetle chip

Calibrated Cluster Signal Number of entries 500 E Peak: 14 Kelectrons 400 F 25x100x230 µm³ p⁺ irrad to 5.7e15 n_{en}/cm² 300 F Vbias = -150 V 200 Temperature = -25 °C **120 GeV** π⁺/p 100 noise ~1750 e Charge (electrons x10 500 -Number of entries Peak : 16 Kelectrons 400 F 25x100x230 µm³ 300 p⁺ irrad to 5.7e15 n_{eg}/cm² Vbias = -180 V 200 Temperature = -25 °C **120 GeV** π⁺/p 100 noise ~2050 e Charge (electrons x10³) Trento 2017 G. Gómez

 Φ = 5.7e15 n_{ex}/cm², 3D 25x100x230 µm³, -25°C, -150V and -180V, π /p beam

Very high CCE at 5.7e15 already at moderate bias voltages

Sensor Geometry	Operating Conditions	Fluence (protons) (n _{eq} /cm²)	Charge (electrons x 10 ³)	CCE* (%)
3D 50 x 50 x 230 µm³	-25 V, 22 °C	0	17	100
3D 25 x 100 x 230 μm^3	-30 V, -25 °C	0	17	100
3D 25 x 100 x 230 μm^3	-150 V, -25 °C	5.7x10 ¹⁵	14	82
3D 25 x 100 x 230 μm^3	-180 V, -25 °C	5.7x10 ¹⁵	16	94

* CCE with respect to non-irradiated sensor

3D sensors with μ -channel cooling

- CNM 3D sensor from CNM IBL qualification batch
- FE-I4A: thinned to 100um at IZM
- Si-Si micro-channels designed by CERN PH-DT, produced by PH-DT in EPFL CMi cleanroom, direct bonding CSEM

Thermal Figure of Merit= ΔT . A / Power =

4 K cm²/W for example ITK studies ~ 13 K cm²/W

Cross activity with WP9

- P-in-p LGADs with segmented cathod, hole read-out
- DC-strip with 160 um pitch

 Gain capability of strip devices demonstrated with Infrared Laser Transient Current

Results from WP7 test-beam: at -25C a S/N value of 90 has been achieved

Simulation activities

The Perugia Model

Develop a TCAD model for the study of radiation damage effect in silicon detectors valid up to the particle fluence expected at the end of HL-LHC operations in the inner layers of vertex detectors at HL-LHC (ATLAS and CMS)

Update on the TCAD surface damage model

Interstrip resistance Gated Control diode

Simulation vs Measurements for Interstrip res.

Gaussian modelling of the interface state energy

The Perugia Model

Nice agreement with charge collection results obtained on irradiated strips

Perugia model applied to study 3D charge collection properties after irradiation -

0 00

JC

O₁₂

AIDA²⁰²⁰

The Perugia Model

Nice agreement with charge collection results obtained on irradiated strips

.. Some possible features to be checked and evaluated in the future:

Simulation outlook

- At the moment the Perugia model is the only one available in our community where a systematic tuning is being performed with charge collection data above 1e15
- In order to perform a systematic comparison among different models for implementing radiation damage in TCAD simulations a larger set of data on charge collection for segmented devices (strip + pixels) should be compiled – try to start this effort in WP7 collecting results from R&D activities carried out in the framework of ATLAS and CMS
- The deliverable on the TCAD model is foreseen for the end of the project, enough time to check and refine tunings of the TCAD models

WP7 test-beam 2017

We got one week of test-beam awarded at CERN-SPS in H6 (both H6A and H6B areas)

17-24 May

- Cooling box and two telescopes available
- Open to all groups participating to WP7

Conclusions and Outlook

WP7 activities have entered the most important phase of our activities

• Knowledge acquired through simulation activities and preliminary characterization of devices has been injected into the design and organization of common sensor runs

- Work done across ATLAS, CMS, CLIC communities \rightarrow sharing of information and optimization of

resources

• All deliverables and milestones on time, trying to advance the completion of common runs in such a way that enough time is available for a complete characterization of the devices before the end of the project