

Task 2.5 Pre-industrialisation of large area silicon detectors (OEAW, CNRS-LLR, KIT, UNILIV, UniFreiburg)

Thomas Bergauer

2st annual meeting AIDA-2020

Demand on Sensors

- Silicon surface
 - Today: Up to 200 m² (CMS)
 - Similar size for the upgrades of CMS and ATLAS (~200 m² each)
 - Significant increase for CMS HGCal ~ 600 m²
- Wafer Size
 - NA11 started with 2" and 3"
 - Today 6" (150 mm) is standard (used by LHC Experiments)
 - → Introduced in the Industry in the 80ies!

Market Survey

Vendors known to the HEP community

- Small Scale Production (few 10-100 wafers per year)
 - Many institutes and companies
 - 6" available at many sites
 - Broad spectra of quality and price

- For large scale production (few 1.000 – 10.000 wafers per year)
 - Up to now only one producer
 - Japanese company

Dual Source Strategy

- To have (at least) a second option which can immediately take over in case of problems is in principle not a bad idea
 - Imagine: quality issues, bankruptcy, earthquakes,...

Common CMS/ATLAS Market survey for Tracker Sensors

Enabling factors:

- Strip sensors for ATLAS and CMS are very similar
- Different specifications are not so significant for the production

Advantages:

- Shows the combined demand of the largest projects of the coming years to interested companies
- We can share qualification work among the two collaborations
- BUT: A very large fraction of sensor production is not reflected in this MS: CMS High Granularity Calorimeter
 - Nevertheless, we are syncing these efforts between tracker and HGCal

CMS/ATLAS Market Survey Procedure

Each interested company has to successfully pass a three step qualification procedure to be eligible to receive the Invitation to Tender!

- Step 1: Companies need to return the "Technical Questionnaire" document where the responses need to fulfil the requirements set in the "Qualification Criteria" document -> ADIA-2020 Milestone MS30 (2016)
- Step 2: Companies need to provide samples free of charge of functional devices of e.g. previous project -> reported here
 - ATLAS and CMS qualified samples developed by HEPHY-ÖAW as 8" proofof-principle
- (Step 3: CMS/ATLAS orders (and remunerates) a batch of prototype sensors according to CMS layout and specs)

Market Survey results

- ADIA-2020 Milestone MS30
- Eight companies replied to the market survey
 - Some "usual suspects"
 - some jumped into business only recently
- Existing collaborations with "new" companies:
 - Infineon (CMS, HEPHY)
 - Novati (CMS, US groups)
 - Lfoundry (CALICE)

Company	Country	Wafer size	AC-Coupled strip sensors	DC-coupled PS-p sensors
Advacam (VTT)	Finland	6"/(8")		х
BEL	India	6"		х
CiS Erfurt	DE	4"	х	х
Hamamatsu	Japan	6"/(8")	х	х
Infineon	AT/DE	8"	x	х
Lfoundry	Italy	8"	х	х
Micron	UK	6"	х	х
Tezzaron/Novati	USA	8"	х	х

Demand according to Markey Survey:

	AC-Coupled strip sensors	DC-coupled PS-p sensors						
ATLAS	23'000 on 6"							
CMS	27'500 sensors ≈ 23'500 6" wafers	8'500 sensors ≈ 4'250 6" wafers						

Focus on Infineon

- Although other companies also replied to market survey, we are concentrating to only one company here, since there is already a fruitful collaboration between them and HEPHY
- Infineon is an European Semiconductor company
 - Focus on power devices -> experience with fully depleted devices

6" p-on-n sensors (2012) \rightarrow bare 8" wafer (2014)

Fully processed 8" wafer (end 2015)

Market Survey

Collaboration HEPHY -- Infineon

- 2009: Project started between HEPHY and IFX by private contacts and a "semi-official" visit of HEPHY staff and students to Infineon Villach
- 2012: First production of 6" p-on-n sensors
 - Goal: re-produce the current CMS tracker sensors
 - Several batches in 5 different runs with good quality, but some issues, eventually tracked down to charge-ups
- Since 2014: Working on 8" n-in-p process for CMS tracker phase II upgrade
 - First production finished in October 2015
 - Second batch currently under production with many improvements
- Since 2015: Development of sensors for CMS Highgranularity calorimeter
 - ~15 wafers delivered with different thicknesses

6" p-on-n Wafers:

TRACKER SENSORS

"CMS" should read KIT and HEPHY-ÖAW "ATLAS" should read "Freiburg" and "Uliverpool"

Tracker Sensors

Specifications and Wafer Layout

- Specifications
 - High resistive float-zone p-type base material
 - Resistivity of 7 kΩ cm
 - 200 µm physical and active thickness
- Wafer Layout
 - Main sensor 2S long \rightarrow elongated version of 2S for CMS
 - \cong 10 cm x 15 cm, strip length \cong 7.5 cm, w/p \cong 0.25
 - 2032 strips segmented into two parts
 - 8 different baby sensors
 - Irradiations
 - P-stop geometry studies, etc.
 - Test structures
 - Diodes, MOS, GCD, dielectric breakdown, etc.
 - "HGC-shaped" test diode

Split Groups of 1st batch

- Infineon processed 25 wafers in total
- 23 delivered to HEPHY
- Four 2S long assembled to modules for beam tests
- One 2S long destroyed during handling

18 2S long sensors available for detailed testing

Split groups

- 6 different realizations of Pstop
 - 3 different implantation doses
 - 2 different thermal budgets
- 2 different Pspray implantation doses
- 5 different R_{poly} implantations

PStop	01	02	03	04	05	06	07	08	09							16	17	18	19	20	21	22	23	24	25
PSpray										10	11	12	13	14	15										
PSpray A										10	11	12													
PSpray B													13	14	15										
Pstop early A	01	02	03																						
Pstop early B				04	05	06																			
Pstop early C							07	08	09																
Pstop late A																16	17	18							
Pstop late B																			19	20	21	22			
Pstop late C																							23	24	25
Rpoly A	01	02	03	04	05																				
Rpoly B						06	07	08	09																
Rpoly C										10	11	12	13	14	15										
Rpoly D																16	17	18	19	20					
Rpoly E																					21	22	23	24	25

Tracker Sensors

Coupling Capacitance Issues

Tracker Sensors

- The coupling capacitance of 2S long sensor shows a dependency on the measuring frequency and amplitude and strip number
- Tracked to Schottky contact (too low strip implantation) and differences in metallization in 1st batch

Sensor Bow

- Application of vacuum visibly flattens 2S sensor on the chuck
- CMS reports sensor bows of 160um and 80um
- ATLAS 03_2S seems to have bow about 400um...

Tracker Sensors

HV Stability

- CMS found more stable IV for smaller sensors rather the large 2S ones (15x10cm²)
- ATLAS also saw vacuum dependence of current
 - "Training" allowed to achieve higher breakthrough voltages
- Both saw humidity dependence of breakthrough
- With feedback provided to IFX they are working on improvements

CMS 2S vs. Diodes

Voltage (V)

HGC SENSORS

HGC sensors

CMS Phase II Endcap Calorimeter

• Planned upgrade project to be installed during LS3 (2023-2025)

	EE	FH	Total
Area of silicon (m ²)	380	209	589
Channels	4.3M	1.8M	6.1M
Detector modules	13.9k	7.6k	21.5k
Weight (one endcap) (tonnes)	16.2	36.5	52.7
Number of Si planes	28	12	40

Test Beam Setup

- Modules built using 6" sensor from HPK and SKIROC readout chip
- Modules mounted on absorber plates
- used for Testbeam at FNAL (July 2016)
- HGC EE prototype up to 16 layers was successfully constructed and operated

250 GeV Electron passing through the 8 layers

HGC sensors

HGC sensors

8-inch Infineon Prototype Wafer

- 8-inch n-on-p Wafer designed
- Wafer **production**:
- First 5 wafers of order arrived in November 2016
- Next 16 wafers of order arrived in February 2017

- 235 cells (diodes)
- ~1 cm² pad size
- Hexagonal structure to use the space on wafer more efficiently

Each cell: n-on-p Diode

- Large size of sensor (≈ 18 cm x 16,5 cm) no standard size, therefore new measurement setups need to be developed
- Size leads to additional difficulties in irradiations of full 8" sensor

Thomas Bergauer

Measurement Challenges

- >200 individual diodes without any bias rail
- IV/CV curves not fully significant due to lateral extension of depletion zone
- Ways for characterization:
 - Single Needle (by motorized XYZ-table; preferred by Infineon)
 - 7-Needle-Probecard (HPK)
 - Full probe card (switching card developed by CERN)

HGC sensors

CERN switching card

CERN 6" probe card

Thomas Bergauer

IV Curves of 200 µm thick IFX HGC Sensors

- Single Needle IV-Curves
 with HV on Needle
- Backplane on GND
- Temperature 22 +/-1 C
- Humidity 45-50%
- All IV-curves measured by hand at the moment
 - > ~8 hours per wafer

HGC sensors

Thomas Bergauer

)AW

HGC sensors

IV Curves of 300 (350) µm thick IFX HGC Sensors

 $T=(23 \pm 2)^{\circ} H: 45-50\%$

06.04.17

Thomas Bergauer

Current Statistics for Single Needle Measurements

- Plots show the presence of a defect cell on a wafer (high maximum)
- Mean/Median shows that implantation dose "p-stop 2" gives lower currents

Current [uA]

Single Needle IV mapped to geometry

HGC sensors

- IV curves mapped to 8" 256 pad HGC sensor geometry
- 4 Quadrants with different pad spacing can be seen in voltage and current behavior

06.04.17

Thomas Bergauer

2D Breakdown Simulation

- TCAD Sentaurus Synopsys: Finite element semiconductor simulation package (1D,2D,3D)
- 2 Pad Geometry (2D)
- Mesh: ~ 1.8 * 10⁵ elements
- Both Pads grounded

HGC sensors

- Larger pad to pad distance leads to lower breakdown voltage
- In contradiction to single needle measurements

06.04.17

Metal Overhang at 21µm pad distance

HGC sensors

 Sensor design contains four regions with different pad distances 21/40/60/80µm

Region with 21µm pad distance:

- ➢ Metal overhang design value 5 µm
- Metal overhang here < 1µm</p>
- High current of cell

Issue caused by process:

- Metal deposition after backside thinning, thus small sag during photolithography and metal etching causing inhomogeneous metal etching
- -> Infineon is working on improvement

[n]

100-140µm thick sensors

- Infineon produced 8" sensors with both, physical and active thickness of 140µm
 - Unclear if mechanical stability of such thin sensors is feasible
 - No decision if IFX will offer 140µm for the series production
- We are working on two alternative approaches with Infineon:
 - Epitaxial sensors (currently only n-type bulk available)
 - New process with alternative backside processing (improves quality on all thicknesses, especially on metal overhang)

Old epitaxial HPK sensors for comparison:

Planar diodes with Epi thickness of

- 50 µm
- 70 µm

HGC sensors

Summary

- Monopoly situation in planar large-area silicon detectors exists
- CMS and ATLAS performed a market survey to find interested companies for providing sensors for the trackers of both experiments (~200m² each)
 - CMS HGCal adds another 600m²
 - All with the same timescale (Phase II Upgrade 2023-2025)
- European vendor Infineon interested in large-volume productions, e.g.:
 - Prototype sensors for CMS tracker and HGCal produced
 - ATLAS evaluated sensors as Step 2 of market survey
 - Constant improvement visible from batch to batch
- Challenges Academia Industry
 - Project started on technical side without involvement of business/legal departments
 - This changed now as project became more mature
 - Now also administrative / legal / IP discussion for prototype orders via CERN