
Our purpose in AIDA-2020 is to find a most convenient Si for the irradiation fluence 
monitoring and imaging: to find a cost effective solution, therefore we analyze, 
the high resistivity, electronic grade, solar energy grade, multicrystalline 
samples, and we still wait  a special “cheap Si” wafers of Si from Lancaster U, and in 
general we concentrate on details of different Si differently irradiated. 

The series of samples are ready for calibration at CERN).
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The device for integrated fluence monitoring

• The device for the contactless fluence 

monitoring delivered to CERN, the 

instruction book given, the seminar for the 

staff members organized, Vilnius team 

member  is ready to come if necessary.

• The calibration procedure has started, and 

to proton and neutron irradiation the 

irradiation by pions was added.



Fluence imaging (our proposal for LHC(b) - our vision):

1.  Two Si wafer pieces (Fig.) 
put around the proton 
beam.  

2. Irradiate. 

3. Remove.

4. Scan the lifetime 
distribution across both 
pieces. 

5. Transform the lifetime 
map to the integrated 
fluence image. 

The fluence range 1e12-
more that 1e16 hadrons/cm2.

(If the irradiation will be more 
than 3e16 cm-2, then this area 
will be necessary to scan by 
other method, purely optical) 



Si

Needle-tip coaxial MW antenna

d~300 m

Single mode 

fiber

This device for 2D integrated 

fluence imaging up to 3“.

Cross-sectional scans within wafer depth
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It can scan sample in different regimes:

transmission, reflectance and probe



Comparison of characteristics of the 

pion, neutron and proton as irradiated and isothermally (Tan =80 C) annealed Si
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Deep level spectroscopy

• The high neutron fluence introduce deep donors that increased the 

dark conductivity 

• The main deep centers are at ~0,5 and ~0,8 eV (optical activation energy)
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Recombination and trapping
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Trapping and recombination lifetime variations dependent on trap concentration, 

level activation energy and excitation density
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a- Simulated trapping coefficient dependence on temperature for trapping level with activation

energy of 0.23 eV in Si.

b- Variations of recombination and instantaneous trapping lifetimes as a function of reciprocal

thermal energy varying activation energy and concentration of trapping centres.
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DLTS spectra dependent on annealing temperature recorded on Schottky diodes irradiated with 

fluence of Φ=1016 e/cm2. b- The Arrhenius plots obtained for different spectral peaks obtained in 

diodes annealed at 280°C. 

DLTS spectra in electron irradiated Si samples after isochronal (24 h) anneals
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a- The MW-PC transients recorded on the diode sample irradiated with fluence 4×1016 e/cm2

using different scan temperatures T. b-Variations of the carrier recombination (τR) and

trapping (τtr) lifetimes as a function of the reciprocal thermal energy (kT) for sample

irradiated with fluence 4×1016 e/cm2 after heat treatment at Ta= 280°C.

MW-PC characteristics in electron irradiated Si samples after isochronal (24 h) anneal 

at Tan =280 C varying scan temperature T for transients
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Comparison of the simulated (curves) and experimental (symbols) variations of the carrier

trapping lifetimes τtr as a function of reciprocal thermal energy for samples irradiated with

fluence 4´1016 e/cm2 and annealed for 24 h at temperatures Tan=1800C (a) and Tan=2800C (b).

Here, the bold curve represents a sum of emission flows from different trapping levels those

form the single thermal emission peaks, shown by thin solid curves. Simulations of the

resultant τtr(T) spectrum were performed including temperature dependent changes of the

recombination lifetime τR(T).

Trapping spectra measured by  MW-PC in 6.6 MeV electron irradiated Si samples 

after isochronal (24 h) anneal at Tan =280 C varying scan temperature T of transients



Trapping spectra measured by  MW-PC in proton irradiated n-Fz and p-Cz Si samples 

after isochronal (24 h) anneal at Tan =250 C varying scan temperature T of transients
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a-Variations of the carrier recombination (τR) and trapping (τtr) lifetimes as a function of the reciprocal thermal

energy (kT) for p-Cz and n-Fz samples irradiated with fluence 1×1014 e/cm2 after heat treatment at Tan= 250°C.

b- Comparison of the simulated (curves) and experimental (symbols) variations of the carrier trapping lifetimes τtr

as a function of reciprocal thermal energy for n-Fz Si sample irradiated with fluence 5´1015 e/cm2 and annealed

for 24 h at temperatures Tan=2500C



Trapping spectra measured by  MW-PC in pion irradiated Si samples after isochronal 

(24 h) anneal at Tan =150 C varying scan temperature T of transients

Comparison of the simulated (curves) and experimental (symbols) variations of the carrier

trapping lifetimes τtr as a function of reciprocal thermal energy for n-Fz Si (a) and n-Cz Si (b)

samples irradiated with fluence 1´1014 e/cm2 and annealed for 24 h at temperatures

Tan=1500C
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Different Si crystals were investigated and their possibilities for the hadron

fluence monitoring and for the hadron beam imaging were determined.

Recombination prevails in the as-irradiated material, and recombination

lifetimes fit a single curve in lifetime-fluence dependence for neutrons, protons

and pions as well as for various technology Si materials

Isothermal (80C) anneals (hadron irradiated Si) lead to enhance of trapping

effect, - 2-componential decay transients with long asymptotic decay

Amplitude and instantaneous lifetime of trapping component depends on

irradiation fluence

Trapping indicates increase of the role of point defects. Spectra of trapping

lifetime correlate with those of O-I-DLTS, while variation of peaks ascribed to

different point traps vary with temperature (100 -300 C) of isochronal (24 h)

anneals, indicating non-trivial transforms of radiation defects.

Summary
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Defect 

Heat-

treatmen

t
Non-annealed Annealed at 80°C at 180°C at 280°C

Φ=1016

e/cm2

Method

1 5 1 5 1 5 1 5

Concentration of trapping centres (1014 cm-3)

V2
/

VP

DLTS
0.83 2.2 1.2 2.1 0.7 0.21 - -

V2O DLTS
0.083 - 0.12 -

0.08

3
- 0.21 0.23

MW-PC - - - - - 3.4 - 5

V3O DLTS
0.035 - 0.18 - 0.15 - 0.17 0.065

MW-PC - - 0.97 1.8 - - - -

V3
= DLTS - >10 >100 >100 - >100 -

MW-PC - - 6 15 - 9 4 3

V2
= DLTS 11 6.4 14 8.5 - 8.1 1.9 -

MW-PC - - 1.4 - 1.2 0.2 0.5 -

VO DLTS 3.1 5.6 4.8 7.9 2.7 5 1.4 -

IO2 DLTS - 0.072 0.95 0.19 2.7 0.14

V3
 DLTS

- - 0.84 2.2 0.96 0.1 0.96 0.1

A-V DLTS
- - >100 - >100 - - -

Parameters of the carrier emission centres dependent on heat-treatment

temperature extracted by O-I-DLTS and MW-PC techniques



Trap spectra in 6.6 MeV electron irradiated Si samples as a function of

fluence evaluated by O- I-DLTS

The Arrhenius plots obtained for different separated spectral peaks are illustrated in figure (c) for sample

irradiated with fluence of Φ=1×1016 e/cm2.
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