
Framework extensions:
Standardizing Gaudi condition handling

Hadrien Grasland
LAL – Orsay

2

Task 3.6 – Framework Extensions

● Original task objectives (from AIDA2020 proposal):
– Parallel algorithm scheduling for HEP frameworks

– To be developed in a framework-independent way

– Then integrated in Gaudi, Marlin, PandoraPFA

● However, parallel Gaudi algorithm scheduling work was
completed before AIDA-2020 started

● Decided to refocus on another obstacle to Gaudi
parallelization, namely detector condition handling

3

Some context

● Multi-processing is becoming too memory-intensive:
– CPU core counts are exploding, but RAM prices vary slowly

– Main memory bandwidth is becoming a major bottleneck

– Importance of caches & scratchpads is increasing

● Result: many experiments must move to multi-threading

● Frameworks need to adapt to concurrent event processing
● One issue: time-dependent detector state, aka conditions

– Detector state was historically modeled as a singleton...

4

A bit of terminology

Condition data

State of
detector

elements

Interval of validity (IoV)

Time

5

Effect of out-of-order processing

Global detector
state during
acquisition

Measured
event stream

Recorded
event stream

~1000
events

Time

File
order

6

Current Gaudi status

● Gaudi currently has no standard condition support
● Each experiment historically built its own mechanism
● These are all broken by concurrent event processing

● This is an opportunity to…
– Move towards common abstractions & interfaces

– Give new Gaudi users a pre-built solution

– Share more code between historical users

● In this talk, I’ll present a prototype implementation, whose
integration into Gaudi is being actively discussed

7

Requirements

● Allow concurrent event processing (!)
● Support typical usage patterns efficiently
● Provide a common interface to diverse storage backends
● Keep RAM usage under control
● Enable efficient IO & computation patterns
● Maximize usability, scalability, resilience to errors
● Optimize compatibility with experiment-specific efforts

8

Condition usage patterns

● Overall, conditions change very slowly w.r.t. event data
– At one extreme, LHCb conditions are valid for 1 run (~hours)

– At the other, ATLAS has noise bursts: ~200ms every minute

– Still thousands of events between IoV changes on average!

● Event processing requirements vary between experiment
– LHCb: ~10k raw conditions, very long IoVs, 40 MHz HLT on

~3k nodes HLT node budget → ~75 µs/event

– ATLAS: ~300 raw conditions, ~10 of them can vary rapidly
(IoV < 1 minute). HLT node budget ~100ms/ev

9

Important optimizations

● LHCb: Take a fast path when conditions do not change
– As before, reuse previous raw & derived condition data

– Avoid checking individual condition validity for every event

– Minimize condition readout overhead in event processing

● ATLAS: Keep multiple detector states in flight
– Do not duplicate rarely changing state (common case)

– Handle out-of-order events on IoV boundaries efficiently

– Process “new” conditions in parallel with “old” events

● Diverse requirements, but compatible with each other!

10

Storage backends

● In-RAM condition storage is a surprisingly popular problem
– Traditional: Detector state singletons (e.g. Detector Store)

– ATLAS: Detector state singleton with versioned contents

– DDCond: Multiple “time slices” of detector state

– Prototype: Conceptually similar to DDCond

● Some heterogeneity is likely to remain around
– Unless ATLAS suddenly decides to move to DD4Hep

● Backend-specific framework code should be minimized

11

Constraining RAM usage

● Major goal of multi-threading: keep RAM usage low!
– Do not let condition state grow indefinitely

– Expose the ability of slice-based backends to set clear
bounds on condition storage size

– Condition storage can be abstracted as ConditionSlots

● Where framework interface plays a role:
– Set a limit on the amount of ConditionSlots in flight

– Track condition usage & perform garbage collection

– Be high-level enough to allow storage optimizations

12

Transient storage interface

● Setup storage for N condition slots (0 = impl-defined):

● Allocate condition storage for an event (may be delayed):

● Declare condition dependencies and associated metadata:

● Access condition data through smart pointers (“handles”):

13

Efficient condition IO

● Gaudi scheduler was mostly designed for CPU-bound work
● Ongoing debate regarding how IO should be integrated:

– IO tasks modeled as blocking Algs on extra OS threads?
● Pros: Code reuse, familiar concepts, minimal scheduler rework
● Cons: Inefficient, fragile, thread-unsafe by default, hard to use

– IO resources modeled as asynchronous services?
● Pros: No wasted RAM & context switches, thread-safe by default,

global request awareness, this is where standard C++ is going
● Cons: Integration with algorithm scheduling is more difficult

● Prototype interface can accommodate both designs

14

Efficient computations

● Algorithm based parallel condition derivation is supported
● Ongoing debate regarding how it should be scheduled

– Extend event processing infrastructure for conditions?
● Pros: Code reuse, scheduler aware of full processing graph
● Cons: Mixing frequently and rarely changing data likely to hurt event

loop performance, worrying scheduler complexity, race conditions

– Use dedicated infrastructure for some condition work?
● Pros: Simpler building blocks, maximal event loop performance
● Cons: Effort duplication, integration with event loop is more limited

● Prototype interface can accommodate both designs

15

Prototype performance

● Tested with batches of 10k events, 10k raw conditions,
on an Intel Xeon E5-1620 v3 @ 3.50GHz (4 cores + HT)

● Current overhead of individual operations:
– Writing/reading transient storage: 0.3 µs / 10 ns

– Scheduling an event w/ full condition reuse: 5.4 µs

– Regenerating raw conditions: (12.3 + 0.3 x Ncond) µs

– Deriving conditions (1.0 + 0.1 x Nalg + 0.3 x Ncond,out) µs

● Multi-threaded scalability:
– Reads are sync-free, other ops use fine-grained locking

– Works concurrently (7.97x speedup + IO latency hiding)

16

Conclusions

● Prototype achieves its intended goals, and then some:
– Simple storage abstractions, suitable for all Gaudi users

– Event loop performance is sufficient for LHCb

– Concurrent condition IO/derivation, as required by ATLAS

– Passed independent design review from B. Hegner

● Integration in Gaudi has begun, waiting for community
consensus on various matters:
– Standard Gaudi abstraction for reentrant storage access

– Choice of mechanism(s) for asynchronous IO

– Distribution of condition handling responsibility

17

Questions? Comments?
Prototype code @ https://gitlab.cern.ch/hgraslan/conditions-prototype/

https://gitlab.cern.ch/hgraslan/conditions-prototype/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

