@= UNIVERSITE

L]
universite
PARIS-SACLAY

Advanced tracking tools

Frank Gaede & Hadrien Grasland
DESY, Hamburg & LAL, Orsay

- This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

Task 3.6 — Advanced Tracking Tools

* Original task objectives (from AIDA2020 proposal):

- Development of advanced parallel algorithms for track
finding and fitting in AIDA Tracking Tool toolkit (aidaTT)

- Application to LHC and LC

» Since then, ACTS was released as open source software

— Based on ATLAS Run2 tracking software
— Used for FCC, use planned for ATLAS Run3, interest from LC

* Decided to invest large fraction of the work in ACTS:
— Parallelization of track finding and fitting tools
- Integration of generic pattern recognition tools from aidaTT
- Investigate application of ACTS to LC software

Tracking activities at DESY

Validating AIDA tracking tools for large-scale MC production

Checking automatic extraction of material description
fromm DD4Hep to DDRec for tracking

— Observing compatible resolution with former, manually
defined tracking geometry

Plan to investigate using ACTS in aidaTT/MarlinTrk
tracking interface, for application to LC

— ACTS has a tracking geometry prototype from CLICdp group

H2 2017 will be more focused on tracking activities

Remainder of this talk will focus on ACTS & LAL activities

About ACTS

“A Common Tracking Software”, http://acts.web.cern.ch/
Extracting ATLAS' tracking SW to an independent package
- Benefits from decades of LHC bugfixes & optimization

- Minimal build dependencies: CMake + Boost + Eigen

Benefits of such a project:

- Lets new experiments (FCC-hh, CLIC...) reuse previous work
- Enables shared tracking R&D across experiments

- Fosters collaboration with other fields (e.g. TrackML)

— Streamlines use of standard software development tools

http://acts.web.cern.ch/

Why ATLAS?M

* ATLAS tracking is extremely complex:

Solenoid Toroid

1 —(N

Inner Detector Calorimeter Muon System

* Hence their tracking code is built for diverse scenarios:
- Two very different magnets =~ — Field-agnostic code
- Heterogeneous detection tech. — Technology-agnostic code

- Big calorimeter in the middle — Integrated into tracking

[1] Slide contents from A. Salzburger, “ATLAS Tracking Software: history, status & prospects”, Common Track Reconstruction Forum, 5
https://indico.cern.ch/event/459865/contributions/1961745/attachments/1199090/1744232/CDOT-2015-Dec-Salzburger.pdf (2015)

https://indico.cern.ch/event/459865/contributions/1961745/attachments/1199090/1744232/CDOT-2015-Dec-Salzburger.pdf

Project status!?

 What is available today:
- Infrastructure (git workflow, Cl + human review, Docker...)
- Geometry (including DD4Hep & TGeo interfaces)
- Event Data Model (highly configurable), incl. measurements
— Extrapolation, propagation in magnetic field
- Material mapping (from Geant4 to simplified geometry)

 What is being worked on:
— Track finding and fitting
- Documentation

- Test coverage and thread safety
6

[2] See also: http://indico.cern.ch/event/577003/contributions/2476581/attachments/1424783/2185211/ACTS-CDOT-Status-2017-03-07.pdf

http://indico.cern.ch/event/577003/contributions/2476581/attachments/1424783/2185211/ACTS-CDOT-Status-2017-03-07.pdf

Thread-safety

« ACTS is not a reconstruction framework

- Itis a toolkit, to be integrated into experiment frameworks

- Many of them moving to multi-threaded, multi-event designs

 ACTS comes remarkably well-prepared...

template <class T> bool propagateRungeKutta

PropagationCache& pCache,

const 1& tParameters,
const Surface& sf) const;

 ...butin C++, mistakes are only a few keystrokes away:

private:

mutable std::vector=const DetectorElementBase®= m_binmembers;
mutable std::vector=const DetectorElementBase= m_neilghbours,;

¥

[(ExtrapolationCell<T>& eCell,

Testing ACTS with threads

* First step: Made the test framework multithreaded

- Testing new code with multiple threads should be trivial
- Longer-term, | want to bring this to automated Cl tests

* This uncovered many thread-safety issues... ®

- ...in the test framework, not the toolkit itself ©

[hadrien@pc-grasland acCTS_Test]$ ACTFWExtrapolationTest
Sucessfully added I0 Algorithm Algorithm to Seqeuencer.
Sucessfully appended Event Algorithm ExtrapelationTestAlgorithm

Sequencer
Sequencer

Sequencer
Sequencer
Sequencer
Sequencer
Algorithm
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer

INFO
INFO

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

Initializing the event loop for:

-> 0 I0 Algorithms
-> 1 Event Algorithms

Registering

W ROOT output File : SPWD/ExtrapolationTest.root

Processing the event loop:

EVENT
EVENT
EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

0 <== start.
<== start.
start.
start.
start.
start.
start.
<== start.

detected *** ACTFWExtrapolationTest:

detected *** ACTFWExtrapolationTest:
detected *** ACTFWExtrapolationTest:

double

free or corruption (fasttop): 9x0000000002aaec0do

free(): invalid next size (fast): 0xPE007fe6e0000abo ***
double free or corruption (out): @x00007fe6e0000aed ***

detected *** ACTFWExtrapolationTest*** glibc detected *#** ACTFWExtrapolationTest: *** glibc d
etected *** ACTFWExtrapolationTest: double free or corruption (!prev): 0x00007fe6f0004920 ***

pc-grasland acTsS

Test]s

500

-500

Sensitive material

!
5

00

|
1000
X [mm]

Early performance numbers

* Extrapolation code scales well to highly parallel CPUs:
- Tested on a dual-socket 64-core machine @ CERN openlab
- Workload: fast simulation without material effects
- Essentially a stress test for propagation in magnetic field

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

o ol
2.55—',% o
-l jl
ol B o B!
& initialization, 8|
156 geometry building q
<
15+ :
0.5s :
l |

0" 0 IIU ZIO 3IU 4I0 = 5[0

E,

Writing thread-safe code

* Top multi-threading benefit: Tasks can share data
— Detector geometry, magnetic field, conditions...

* Top multi-threading hazard: Tasks are sharing data
- Race conditions, complex synchronization, bottlenecks...

* Key to effective multi-threading: control data sharing
- Avoid sharing mutable state (hard to get right, inefficient)
— Try to restrict sharing to read-only data instead
- In C++, a key ingredient is to enforce const-correctness

10

Steps towards const-correctness

« Ban careless use of “mutable” (const-incorrect, non-local)
- Make interfaces const-correct whenever possible

- When deeper refactoring is needed, temporarily replace with
const_cast (still const-incorrect, but at least local to a scope)

Remove every use of "mutable”in ACTS MERGED] (~) od1 "1 w17
1265 - opened a month ago by Hadrien Grasland updated 3 weeks ago

* Review use of pointers in the ACTS codebase
- C++ raw and smart pointers are const-incorrect by design ®
- Pointer-to-const (const T*) can sometimes be a workaround
— Still looking for a good solution when mutation is needed...

11

Next steps

DESY: Investigate adaptation of ACTS for ILC/CLIC

LAL: Add automated multi-threaded tests to Cl builds
Review every single ACTS pointer for const-correctness

- Use ptr-to-const more, improve ptr-to-mutable usability
Optimize performance further through vectorization

- Two interns coming at LAL, one aiming at a PhD

- No shortage of subjects to tackle!

« Parallel collision detection with VecGeom

* Global-local coordinate transforms

» Vectorized Runge-Kutta integration
 Parallel Kalman filtering on CPUs and GPUs...

12

Questions? Comments?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13

