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Task 3.6 — Advanced Tracking Tools

* Original task objectives (from AIDA2020 proposal):

- Development of advanced parallel algorithms for track
finding and fitting in AIDA Tracking Tool toolkit (aidaTT)

- Application to LHC and LC

» Since then, ACTS was released as open source software

— Based on ATLAS Run2 tracking software
— Used for FCC, use planned for ATLAS Run3, interest from LC

* Decided to invest large fraction of the work in ACTS:
— Parallelization of track finding and fitting tools
- Integration of generic pattern recognition tools from aidaTT
- Investigate application of ACTS to LC software



Tracking activities at DESY

Validating AIDA tracking tools for large-scale MC production

Checking automatic extraction of material description
fromm DD4Hep to DDRec for tracking

— Observing compatible resolution with former, manually
defined tracking geometry

Plan to investigate using ACTS in aidaTT/MarlinTrk
tracking interface, for application to LC

— ACTS has a tracking geometry prototype from CLICdp group

H2 2017 will be more focused on tracking activities

Remainder of this talk will focus on ACTS & LAL activities



About ACTS

“A Common Tracking Software”, http://acts.web.cern.ch/
Extracting ATLAS' tracking SW to an independent package
- Benefits from decades of LHC bugfixes & optimization

- Minimal build dependencies: CMake + Boost + Eigen

Benefits of such a project:

- Lets new experiments (FCC-hh, CLIC...) reuse previous work
- Enables shared tracking R&D across experiments

- Fosters collaboration with other fields (e.g. TrackML)

— Streamlines use of standard software development tools


http://acts.web.cern.ch/

Why ATLAS?M

* ATLAS tracking is extremely complex:
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Inner Detector Calorimeter Muon System

* Hence their tracking code is built for diverse scenarios:
- Two very different magnets =~ — Field-agnostic code
- Heterogeneous detection tech. — Technology-agnostic code

- Big calorimeter in the middle — Integrated into tracking

[1] Slide contents from A. Salzburger, “ATLAS Tracking Software: history, status & prospects”, Common Track Reconstruction Forum, 5
https://indico.cern.ch/event/459865/contributions/1961745/attachments/1199090/1744232/CDOT-2015-Dec-Salzburger.pdf (2015)


https://indico.cern.ch/event/459865/contributions/1961745/attachments/1199090/1744232/CDOT-2015-Dec-Salzburger.pdf

Project status!?

 What is available today:
- Infrastructure (git workflow, Cl + human review, Docker...)
- Geometry (including DD4Hep & TGeo interfaces)
- Event Data Model (highly configurable), incl. measurements
— Extrapolation, propagation in magnetic field
- Material mapping (from Geant4 to simplified geometry)

 What is being worked on:
— Track finding and fitting
- Documentation

- Test coverage and thread safety
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[2] See also: http://indico.cern.ch/event/577003/contributions/2476581/attachments/1424783/2185211/ACTS-CDOT-Status-2017-03-07.pdf


http://indico.cern.ch/event/577003/contributions/2476581/attachments/1424783/2185211/ACTS-CDOT-Status-2017-03-07.pdf

Thread-safety

« ACTS is not a reconstruction framework

- Itis a toolkit, to be integrated into experiment frameworks

- Many of them moving to multi-threaded, multi-event designs

 ACTS comes remarkably well-prepared...

template <class T> bool propagateRungeKutta

PropagationCache& pCache,

const 1& tParameters,
const Surface& sf) const;

 ...butin C++, mistakes are only a few keystrokes away:

private:

mutable std::vector=const DetectorElementBase®= m_binmembers;
mutable std::vector=const DetectorElementBase= m_neilghbours,;

¥

[(ExtrapolationCell<T>& eCell,




Testing ACTS with threads

* First step: Made the test framework multithreaded

- Testing new code with multiple threads should be trivial
- Longer-term, | want to bring this to automated Cl tests

* This uncovered many thread-safety issues... ®

- ...in the test framework, not the toolkit itself ©

[hadrien@pc-grasland acCTS_Test]$ ACTFWExtrapolationTest
Sucessfully added I0 Algorithm Algorithm to Seqeuencer.
Sucessfully appended Event Algorithm ExtrapelationTestAlgorithm

Sequencer
Sequencer

Sequencer
Sequencer
Sequencer
Sequencer
Algorithm
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer
Sequencer
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Sequencer

INFO
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INFO
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Initializing the event loop for:

-> 0 I0 Algorithms
-> 1 Event Algorithms

Registering

W ROOT output File : SPWD/ExtrapolationTest.root

Processing the event loop:

EVENT
EVENT
EVENT
EVENT
EVENT
EVENT
EVENT
EVENT

0 <== start.
<== start.
start.
start.
start.
start.
start.
<== start.

detected *** ACTFWExtrapolationTest:

detected *** ACTFWExtrapolationTest:
detected *** ACTFWExtrapolationTest:

double

free or corruption (fasttop): 9x0000000002aaec0do

free(): invalid next size (fast): 0xPE007fe6e0000abo ***
double free or corruption (out): @x00007fe6e0000aed ***

detected *** ACTFWExtrapolationTest*** glibc detected *#** ACTFWExtrapolationTest: *** glibc d
etected *** ACTFWExtrapolationTest: double free or corruption (!prev): 0x00007fe6f0004920 ***
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Early performance numbers

* Extrapolation code scales well to highly parallel CPUs:
- Tested on a dual-socket 64-core machine @ CERN openlab
- Workload: fast simulation without material effects
- Essentially a stress test for propagation in magnetic field

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.
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Writing thread-safe code

* Top multi-threading benefit: Tasks can share data
— Detector geometry, magnetic field, conditions...

* Top multi-threading hazard: Tasks are sharing data
- Race conditions, complex synchronization, bottlenecks...

* Key to effective multi-threading: control data sharing
- Avoid sharing mutable state (hard to get right, inefficient)
— Try to restrict sharing to read-only data instead
- In C++, a key ingredient is to enforce const-correctness
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Steps towards const-correctness

« Ban careless use of “mutable” (const-incorrect, non-local)
- Make interfaces const-correct whenever possible

- When deeper refactoring is needed, temporarily replace with
const_cast (still const-incorrect, but at least local to a scope)

Remove every use of "mutable”in ACTS MERGED] (~) od1 "1 w17
1265 - opened a month ago by Hadrien Grasland updated 3 weeks ago

* Review use of pointers in the ACTS codebase
- C++ raw and smart pointers are const-incorrect by design ®
- Pointer-to-const (const T*) can sometimes be a workaround
— Still looking for a good solution when mutation is needed...
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Next steps

DESY: Investigate adaptation of ACTS for ILC/CLIC

LAL: Add automated multi-threaded tests to Cl builds
Review every single ACTS pointer for const-correctness

- Use ptr-to-const more, improve ptr-to-mutable usability
Optimize performance further through vectorization

- Two interns coming at LAL, one aiming at a PhD

- No shortage of subjects to tackle!

« Parallel collision detection with VecGeom

* Global-local coordinate transforms

» Vectorized Runge-Kutta integration
 Parallel Kalman filtering on CPUs and GPUs...
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Questions? Comments?
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