
Advanced tracking tools
Frank Gaede & Hadrien Grasland

DESY, Hamburg & LAL, Orsay

2

Task 3.6 – Advanced Tracking Tools

● Original task objectives (from AIDA2020 proposal):
– Development of advanced parallel algorithms for track

finding and fitting in AIDA Tracking Tool toolkit (aidaTT)

– Application to LHC and LC

● Since then, ACTS was released as open source software
– Based on ATLAS Run2 tracking software

– Used for FCC, use planned for ATLAS Run3, interest from LC

● Decided to invest large fraction of the work in ACTS:
– Parallelization of track finding and fitting tools

– Integration of generic pattern recognition tools from aidaTT

– Investigate application of ACTS to LC software

3

Tracking activities at DESY

● Validating AIDA tracking tools for large-scale MC production
● Checking automatic extraction of material description

from DD4Hep to DDRec for tracking
– Observing compatible resolution with former, manually

defined tracking geometry

● Plan to investigate using ACTS in aidaTT/MarlinTrk
tracking interface, for application to LC
– ACTS has a tracking geometry prototype from CLICdp group

● H2 2017 will be more focused on tracking activities

● Remainder of this talk will focus on ACTS & LAL activities

4

About ACTS

● “A Common Tracking Software”, http://acts.web.cern.ch/
● Extracting ATLAS’ tracking SW to an independent package

– Benefits from decades of LHC bugfixes & optimization

– Minimal build dependencies: CMake + Boost + Eigen

● Benefits of such a project:
– Lets new experiments (FCC-hh, CLIC…) reuse previous work

– Enables shared tracking R&D across experiments

– Fosters collaboration with other fields (e.g. TrackML)

– Streamlines use of standard software development tools

http://acts.web.cern.ch/

5

Why ATLAS?[1]

● ATLAS tracking is extremely complex:

● Hence their tracking code is built for diverse scenarios:
– Two very different magnets

– Heterogeneous detection tech.

– Big calorimeter in the middle

 → Field-agnostic code

 → Technology-agnostic code

 → Integrated into tracking

[1] Slide contents from A. Salzburger, “ATLAS Tracking Software: history, status & prospects”, Common Track Reconstruction Forum,
 https://indico.cern.ch/event/459865/contributions/1961745/attachments/1199090/1744232/CDOT-2015-Dec-Salzburger.pdf (2015)

https://indico.cern.ch/event/459865/contributions/1961745/attachments/1199090/1744232/CDOT-2015-Dec-Salzburger.pdf

6

Project status[2]

● What is available today:
– Infrastructure (git workflow, CI + human review, Docker...)

– Geometry (including DD4Hep & TGeo interfaces)

– Event Data Model (highly configurable), incl. measurements

– Extrapolation, propagation in magnetic field

– Material mapping (from Geant4 to simplified geometry)

● What is being worked on:
– Track finding and fitting

– Documentation

– Test coverage and thread safety

[2] See also: http://indico.cern.ch/event/577003/contributions/2476581/attachments/1424783/2185211/ACTS-CDOT-Status-2017-03-07.pdf

http://indico.cern.ch/event/577003/contributions/2476581/attachments/1424783/2185211/ACTS-CDOT-Status-2017-03-07.pdf

7

Thread-safety

● ACTS is not a reconstruction framework
– It is a toolkit, to be integrated into experiment frameworks

– Many of them moving to multi-threaded, multi-event designs

● ACTS comes remarkably well-prepared…

● ...but in C++, mistakes are only a few keystrokes away:

8

Testing ACTS with threads

● First step: Made the test framework multithreaded
– Testing new code with multiple threads should be trivial

– Longer-term, I want to bring this to automated CI tests

● This uncovered many thread-safety issues… ☹
– ...in the test framework, not the toolkit itself ☺

9

Early performance numbers

● Extrapolation code scales well to highly parallel CPUs:
– Tested on a dual-socket 64-core machine @ CERN openlab[2]

– Workload: fast simulation without material effects

– Essentially a stress test for propagation in magnetic field

10

Writing thread-safe code

● Top multi-threading benefit: Tasks can share data
– Detector geometry, magnetic field, conditions…

● Top multi-threading hazard: Tasks are sharing data
– Race conditions, complex synchronization, bottlenecks…

● Key to effective multi-threading: control data sharing
– Avoid sharing mutable state (hard to get right, inefficient)

– Try to restrict sharing to read-only data instead

– In C++, a key ingredient is to enforce const-correctness

11

Steps towards const-correctness

● Ban careless use of “mutable” (const-incorrect, non-local)
– Make interfaces const-correct whenever possible

– When deeper refactoring is needed, temporarily replace with
const_cast (still const-incorrect, but at least local to a scope)

● Review use of pointers in the ACTS codebase
– C++ raw and smart pointers are const-incorrect by design ☹

– Pointer-to-const (const T*) can sometimes be a workaround

– Still looking for a good solution when mutation is needed…

12

Next steps

● DESY: Investigate adaptation of ACTS for ILC/CLIC

● LAL: Add automated multi-threaded tests to CI builds
● Review every single ACTS pointer for const-correctness

– Use ptr-to-const more, improve ptr-to-mutable usability
● Optimize performance further through vectorization

– Two interns coming at LAL, one aiming at a PhD

– No shortage of subjects to tackle!
● Parallel collision detection with VecGeom
● Global-local coordinate transforms
● Vectorized Runge-Kutta integration
● Parallel Kalman filtering on CPUs and GPUs…

13

Questions? Comments?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13

