

KIT TA Status

Felix Bögelspacher, Bärbel Bräunling, Wim de Boer, Alexander Dierlamm

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

The infrastructure

- Description on <u>http://www.ekp.kit.edu/english/irradiation_center.php</u>
- Cyclotron parameters:
 - Proton energy

~23 MeV (25.3MeV at extraction) ~2.0µA (100nA - 20µA)

- Proton current
- Max. object width 44cm
- Max. object height 17cm
- N₂-cooling temperature -30°C
- On average 4-5h slot every second week
 - up to 6 weeks turn-around time
- E.g., irradiating one sensor of 20mm x 20mm to 5x10¹⁵ n_{1MeV}/cm² takes about 90 minutes.
- Min. quantity of access to be provided: 100h beam time
- Samples can be shipped to us, we irradiated and send them back
 - No visitors expected!

Initial contact and infos: <u>irradiations@lists.kit.edu</u>

2

Projects so far

ect Access Units
5 2.13
5 0.42
015 2.62
5.99
2.92
016 1.22
016 5.43
7 1.67
016 0.17
016 2.62
016 1.92
016 4.08
0.08
1.73
0.33
ioj j)1)1)1 20 20 20 20 20 20 20 20 20 20

Total: 16 projects, 53 users, 33.33h

A. Dierlamm Institut für Experimentelle Kernphysik

Publicity

- Dedicated web page
- Link to AIDA TA on RD50 web page
- Listed in http://irradiationfacilities.web.cern.ch/publicDB.php
- TA video online
- Presentation at the 4th Beam Telescopes and Test Beams Workshop 2016 (3.2.2016, Orsay) with 60 participants
- Personal reminders to previous customers

Institut für Experimentelle Kernphysik

Upgraded monitoring

- Rare SEU in controller memory generate random changes in scanning pattern
- Detailed logging of scanning available now
 - alarm issued when deviations from expectation arise
- Working on online monitoring of beam current for fast feedback

A. Dierlamm Institut für Experimentelle Kernphysik

5.4.2017

TWO EXAMPLES OF PROJECTS

Irradiation study of the CMS upgrade pixel detector readout chip

- AIDA-2020-KIT-2015-04
- PROC600 designed for 600MHz/cm²
- To be confirmed after irradiation
- Publication: 2017 JINST 12 C01078
- 23MeV protons
 300kGy / 10¹⁴p/cm² in SiO₂
- Rate capability maintained after 1.2MGy

Figure 5. Efficiency of PROC600 before and after irradiation.

CMS tracker upgrade: front-side biasing with IFX sensor

- AIDA-2020-KIT-2016-02
- Evaluation of front-side biasing for strip sensors at HL-LHC, which would very much simplify module assembly
- Edge resistivity increases dramatically for high fluence (>6x10¹⁴n_{eq}/cm²)
 → not useful for HL-LHC due to large voltage drop and power dissipation
- Publication in preparation

Sample	Fluence (neq/cm2)	Annealing
VE525852_03_Irrad	6.07E14	10 min @ 60°C
VE525852_04_Irrad	6.07E14	10 min @ 60°C
VE525852_07_Baby	6.82E14	10 min @ 60°C
VE525852_12_Baby	2.10E15	10 min @ 60°C
VE525852_15_Baby	6.82E14	10 min @ 60°C
VE525852_17_Baby	2.10E15	10 min @ 60°C
VE525852_19_Baby	6.82E14	0 min @ start

A. Dierlamm

Institut für Experimentelle Kernphysik

5.4.2017

8

Conclusion

- Irradiations running smoothly
- Upgrading control system
- Slightly behind AIDA schedule
- Very tedious to find/get publications from users

9

SPARES

Energy at Target

- 25.3MeV is the energy in the beam line
- Protons have to pass several materials until they hit the samples
- SRIM gives us a proton energy entering the samples of about 23.8MeV and on average in the sample: **22.9MeV**
- Samples covered by Nickel foils see lower energy ~22.8MeV

01/06/10 16. RD50 Workshop

A. Dierlamm

IFK

Karlsruhe Institute of Technology

Calibration with Diodes

- 3 ELMA diodes from HH
 - Diode 03: U_{dep} = 44V, I_{dep} = 0.2nA, I(2*U_{dep})= 5nA, V=0.25cm^2 x 374 \mu m = 9.36e-3cm^3
 - Diode 06: $U_{dep} = 46V$, $I_{dep} = 2nA$, $I(2*U_{dep}) = 5nA$, V=0.25cm² x 375µm = 9.37e-3cm³
 - Diode 08: U_{dep} = 45V, I_{dep} = 0.2nA, I(2*U_{dep})= 0.4nA, V=0.25cm^2 x \ 374 \mu m = 9.36e-3cm^3
- Irradiation with $I_{beam} = 1.04 \mu A$, $v_x = 115 \text{ mm/s}$, $n_{scans} = 5$
 - F_{est} = (0.56 ± 0.06)e14 p/cm²
- Ni-foils:
 - F_{Ni} = (0.60 ± 0.07)e14 p/cm²

Calibration with Diodes

- Specific leakage currents after irradiation:
 - Diode 03: $I(2xU_{dep}) = 46.2\mu A$, $\Delta I/V = 4.925e-3 A/cm^3$
 - Diode 06: $I(2xU_{dep}) = 45.8\mu A$, $\Delta I/V = 4.888e-3 A/cm^3$
 - Diode 08: $I(2xU_{dep}) = 46.3\mu A$, $\Delta I/V = 4.947e-3 A/cm^3$
- Including a 1°C error for temperature measurement we get $\Delta I/V = (4.9 \pm 0.5)e-3 A/cm^3$
- And finally with $\alpha = 3.99 \pm 0.3e-17 \text{ A/cm}^2$ at 20°C after annealing for 80min at 60°C: $\mathbf{F}_{diode} = (4.9 \pm 0.5)e-3 \text{ A/cm}^3 / \alpha = (1.23 \pm 0.22)e14 n_{eq}/cm^2$

Hardness Factor к

- The hardness factor could be derived by $\kappa = F_{diode}/F_{Ni} = 2.05\pm0.61$
- Previous assumption was **1.85** for **26MeV** protons
- Hardness factor was derived from simulated NIEL data by Huhtinen¹
- Assuming about 22.9 MeV protons on average in the sample, we get κ = 2.00±??
- Alternative measurements of NIEL show quite a spread...

A. Dierlamm

IFK

¹ M. Huhtinen, "Simulation of non-ionising energy loss and defect formation in silicon", NIM A 491 (2002) 194-215

Considering the Errors

- With the used value of 1.85 one still gets an agreement of the equivalent fluence from the different methods considering the errors !
- Considering the nice agreement of measured hardness factor and derived hardness factor from NIEL simulation one could claim the hardness factor for our protons to be **me**

factor for our protons to be **more like 2.0** (+10% to prev. value).

• In general, the stated fluence is **not better than 20%** !

