Design and submission of the RD53A chip

Luigi Gaioni^{a,b}

On behalf of the RD53 Collaboration

^aUniversity of Bergamo

bINFN Pavia

AIDA-2020 2nd Annual Meeting

4-7 April 2017 - LPNHE, Paris

Outline

- RD53 Challenges & Goals
- The RD53A demonstrator: overview and floorplan
- Analog front-end design
- Status and Conclusions

RD53 - An overview

- Focused R&D program aiming at the development of pixel chips for ATLAS/CMS phase 2 upgrades
- 19 institutions from Europe and US
 - Bari, Bergamo-Pavia, Bonn, CERN, CPPM, Fermilab, LBNL, LPNHE Paris, Milano, NIKHEF, New Mexico, Padova, Perugia, Pisa, Prague IP/FNSPE-CTU, RAL, Seville, Torino, UC Santa Cruz.
- 65 nm CMOS is the common technology platform
- RD53 Goals:
 - Detailed understanding of radiation effects in 65nm \rightarrow guidelines for radiation hardness
 - Development of tools and methodology to efficiently design large complex mixed signal chips
 - Design of a shared rad-hard IPs library
 - Design and characterization of common engineering run with full sized pixel array chip

RD53A - Large Scale prototype

- The efforts of the RD53 collaboration are leading to the submission of the RD53A chip
- 400 x 192 pixel, 50um x 50um pixel, 20mm x11.8mm chip
- Goal: demonstrate in a large format IC
 - suitability of 65nm technology (including radiation tolerance)
 - high hit rate: 3 GHz/cm²
 - trigger rate: 1 MHz
 - Low threshold operation with chosen isolation strategy and power distribution
- Not intended to be a production chip
 - will contain design variations for testing purposes (with 3 different versions of the analog very front-end)
 - wafer scale production will enable prototyping of bump bonding assembly with realistic sensors in new technology
 - Final design almost ready
- Submission: May 31, 2017

32 mm

RD53A main specifications

http://cds.cern.ch/record/2113263

From the Spec. document

- Hit rate: up to 3 GHz/cm² (75 kHz pixel hit rate)
- **Detector capacitance**: < 100 fF (200 fF for the edge pixels)
- Detector leakage: 10 nA (20 nA for the edge pixels)
- Trigger rate: max 1 MHz
- Trigger latency: 12.5 us
- Low threshold: 600 e- \rightarrow severe requirements on noise and dispersion
- Min. in-time overdrive: < 600e-
- Noise occupancy: < 10⁻⁶ (in a 25ns interval)
- Hit loss @ max hit rate: 1%
- Radiation tolerance: 500 Mrad @ -15° C

- RD53A should be able to withstand with radiation dose levels at least up to 500 Mrad
- Extensive irradiation campaign in past 3 years to qualify the technology
- Significant radiation damage above 100 Mrad:
 - Analog: transconductance, Vt shift
 - Digital: speed degradation

See M. Menouni talk

- CHIPIX65 and FE65-P2 demonstrator being characterized after irradiation
 See N. Demaria talk for the CHIPIX demonstrator
- 200 Mrad and 500 Mrad simulation models were developed to "predict" the circuit behavior and have been extensively exploited during design phase

RD53A floorplan

RD53A Pixel floorplan

- 50% Analog Front End (AFE) 50% Digital cells A "quad" ٠ The "analog island" Digital logic concept AFE 35 _____15_

- The pixel matrix is built up of 8×8 pixel cores \rightarrow 16 analog islands (quads) embedded in a flat digital synthesized sea
- A pixel core can be simulated at transistor level with analog simulator
- All cores (for each FE flavour) are identical \rightarrow Hierarchical verifications

Pixel array logic organization

• Basic layout unit: 8×8 digital Pixel Core → synthesized as one digital circuit

- One Pixel Core contains multiple Pixel Regions and some additional arbitration and clock logic
- Pixel Regions share most of logic and trigger latency buffering

Digital Chip Bottom (DCB)

Single serial input stream

- RD53A is designed to operate with Serial Powering
 → constant current to power chips/modules in series
- Based on ShuntLDO
- Dimensioned for production chip
- Three operation modes:
 - ShuntLDO: constant input current Iin → local regulated VDD
 - LDO (Shunt is OFF) : external un-regulated voltage → local regulated VDD
 - External regulated VDD (Shunt-LDO bypassed)

Analog front-ends

Synchronous AFE

Differential AFE

- 3 different version of the analog FE (AFE) will be integrated in RD53A
- Three design reviews (the last one in March 28, 2017) have been carried out for the AFEs.
- Final verifications of the AFEs ongoing

Linear AFE

Isolation strategy

	Digital DNW	
35um Analog FE PRBoundry		
	1 1	
Analog DNW		
 Isolation strategy: two different DNWs for analog and digital (like in FE65-P2) 	· · · · · · · · · · · · · · · · · · ·	
 DNW-isolated analog 'islands': 		
 Occasional PFETs using body NW for sub isolation DNW shorted to VDDA 	0.5	
• DNW isolated digital 'sea':		
 DNW biased by VDDD Global substrate not used by supply or device bodies 		

Linear Analog Front-end

- Single amplification stage for minimum power dissipation
- Krummenacher feedback to comply with the expected large increase in the detector leakage current
- High speed, low power current comparator
- 4 bit local DAC for threshold tuning
- In-pixel calibration circuit

- Selectable gain (1 bit) and recovery current (per. Bias DAC)
- Overall current consumption: ~4 uA
- Integrated/tested in CHIPIX65 (with slight modifications)

Synchronous Analog Front-end

- One stage CSA with Krummenacher feedback for linear ToT charge encoding
- Synchronous discriminator, AC coupled to CSA, including offset compensated differential amplifier and latch
- Threshold trimming by means of autozeroing using capacitors
- Fast ToT counting with latch turned into a local oscillator (100-900 MHz)
- Integrated/tested in CHIPIX65 demonstrator chip

Differential Analog Front-end

- Continuous reset integrator first stage with DC-coupled pre-comparator stage
- Two-stage open loop, fully differential input comparator
- Leakage current compensation (not shown) a la FEI4
- Threshold adjusting with global 8bit DAC and two per pixel 4bit DACs

Calibration circuit

- Local generation of the analog test pulse starting from 2 defined DC voltages CAL_HI and CAL_ME) distributed to all pixels and a 3rd level (local gnd)
- Two operation modes which allow to generate two consecutive signals of the same polarity or to inject different charges in neighboring pixels at the same time

AFEs main features (reported in March design review)

	Synch AFE	Lin AFE	Diff AFE*	spec
Charge sensitivity [mV/ke]	43	25	103	-
ENC rms [e]	67	83	53	<<126
Threshold dispersion σ(Qth) rms [e]	93	32	20	<<126
$\int (ENC^2 + \sigma(Q^{\dagger}h)^2) [e]$	115	89	54	<u>≤</u> 126
In-time overdrive [e-]	≤50	≤100	0	≤ 600
Current consumption [µA/pixel]	3.3 ¹	4.3	3.5	<u>≤</u> 4
Time over threshold [ns]	121	99	118	< 133

- Post-layout simulations (*except for the Diff AFE→ schematic level sim), CD=50fF, T=27° C, Qth=600e-.
- In-time overdrive → relative to a Qin=30ke-
- Time walk \rightarrow Qin=1200 e- (relative to a Qin=30ke-)
- ToT \rightarrow Qin=6ke-
- ¹ 5.1uA including the latch

Submission status

- Analog Front-ends:
 - Synchronous & Linear AFEs: final version ready \rightarrow integrated with CORE
 - Differential AFE: final version ready \rightarrow integration with CORE on going
- Analog Chip Bottom (ACB): assembly ready (RD53 IP blocks). Simulation with analog and mixedsignal simulator ongoing
- **Digital**: RTL ready, verifications on-going
- Shunt-LDO: 2A version of Shunt-LDO submitted on 19th Oct. 2016
 - Test of prototypes just started and looks promising
 - Irradiation campaign carried out
 - Simulation of full power system ShLDO-Bandgap-POR ongoing
 - Integration in IO Frame: almost done
- IO Frame: bottom PADs frame almost ready → 199 PADs with 100um pitch; passivation opening: 58um x 86 um; TSV Compatible. Top PAD frame (test and monitoring) assembly ongoing.
 See H. Krüger talk

- The RD53A demonstrator design is being finalized in the framework of the RD53 Collaboration in a 65 nm CMOS technology
- Goal of the RD53A chip is to demonstrate the feasibility of the 65 nm technology in facing the challenging requirements set by the future experiment upgrades at the HL_LHC
- The large-scale chip will be submitted at the end of May 2017
- The final design is almost ready, extensive verifications are on-going

Backup

Lin AFE schematic diagrams

Preamplifier

 Gain stage based on a folded cascode configuration (~3 uA absorbed current) with a regulated cascode load

Comparator

 Low power, fast discriminator (~ 1 uA absorbed current) including Gm stage and a transimpedance amplifier providing a low impedance path for fast switching

Sync AFE schematic diagrams

Preamplifier

- Telescopic cascode with current splitting and source follower
- Two switches controlling the feedback capacitance value

 Offset (and mismatch) cancellation based on comparator autozero (store offset on a capacitor, and then subtract it from signal + offset)

Diff AFE schematic diagrams

- Gain stage with active cascode
- Simple follower as buffer

Pre-comp

- Fully differential amp w/ resistive load
- Acts as single-to-differential converter
- Global Vth DACs generates effective differential supplies
- Local DTHn trims binary-weighted resistive load
- Sets output CM and differential OP for comp

Analog FE bias scheme

Analog bias

- AFE area & arrangement \rightarrow 35um x 35 um aspect ratio with "analog island" arrangement
- Same bump PAD structure
- Common strategy for power, bias distribution & shielding

- M6 V lines for the analog bias
- M5/M7 shield for bias lines in the digital section of the pixel
- AP/M9/M8 V supplies

Pixel array logic organization

- Each Pixel Core receives all input signal from the previous core (closer to the Digital Chip Bottom)
- Regenerates the signals for the next core.
- The timing critical clock and calibration injection signals are internally delayed to have a uniform timing (within 1-2 ns)

