AIDA/RD53 activities in Perugia (AIDA-2020 2nd ANNUAL MEETING)

Sara Marconi, Pisana Placidi, Mauro Menichelli, G.M. Bilei

OUTLINE

Introduction

- Verification Environment for PIXel chips (VEPIX53)
- Approach for reliability in radiation environments
- Digital architecture comparison and choice
- Low-power methodology for serial powering
 - Analysis and optimization
- Conclusions and future work

- Verification Environment for PIXel chips (VEPIX53) for:
 - Modularity, reusability of same testbench:
 - o different tests
 - o multiple design stages
 - different designs/design blocks
 - Extended **flexibility**: stimuli generation
 - Automated verification, performance assessment
 - Test cases:
 - o simulation of previous pixel chips
 - architectural study on PR architectures (behavioral level)
 - for RD53A building blocks and/or full chip
 - in addition: used by different projects at CERN as starting point for verification

Approach for reliability in radiation environments

In this presentation, focus on SEUs for the pixel array logic

- Based on estimated cross-section (5.10⁻¹⁴ cm²):
 - protection strategy is needed for pixel configuration latches
 - \circ ~ 1% pixels already affected after 20s of operation
 - → hardening by cell design, special latches (CPPM, Marsiglia) and/or re-freshing configuration
 - finite state machine protection not required if capable of recovering automatically after a transient of non-functionality
 - \circ $\,$ to be proven with simulations under operating conditions
 - no protection is needed for hit data during trigger latency
 - \circ corruption probability during latency < 10^{-8}
- How to simulate SEU injection?
 - Integrate random bit-flip in sequential elements during simulations of the gate-level or post P&R netlist in VEPIX53
 - **automated verification** to identify eventual persisting effects
 - initial simulations have shown no persistent error

Digital architecture comparison and choice (II)

Digital architectural choices for RD53A

- both architectures have advantages, design optimization ongoing on both sides
- as RD53A is a prototype chip both are being integrated: 1x4 with asychronous front-ends and 2x8 with the synchronous front-end
- the choice on the pixel region shape is aimed to reduce buffer losses (elongated clusters)

- RTL simulations: after recent optimizations, both architectures featuring similar deadtime losses
- Area: centralized architecture has area advantages (with potential lower digital losses thanks to additional memories)
- Power: similar order of magnitude, with distributed architecture possibly lower (at current stage)

- In this context, "concept" of low power is not obvious. Why?
 - Serial powering across modules to reduce material
 → constant current is provided from the powering system
 - The regulator circuit (combination Shunt and LowDrop Out regulator → Shunt-LDO) will burn "surplus" current to keep the serial power current constant
 - Need to know maximum current/power visible to the powering system
 - Low-pass filtering from chip to serial power network: power variations are averaged over a time window (comparable with decoupling time constant)
- Different "definitions" of power:
 - average (over long simulation, with realistic operation) \rightarrow "usual" target for low power designs
 - peaks (look power evolution over time, i.e. power profile):
 - o short time scale (~ps-25ns): should be filtered by on-chip decoupling
 - o longer time scale (~1us): power averaged over such time window seen at the powering system level
 - \rightarrow Optimization target \rightarrow need for a methodology to guide optimization

Low-power methodology for serial powering (II)

Low-power analysis and optimization methodology

Main steps:

) power analysis at gate-level (i.e. after synthesis to gates):

drive architectural choices

2) accurate post Place&Route (P&R) power analysis

Application: detailed design optimization and choices Remark: realistic digital activity based on simulations run with VEPIX53 Low-power methodology for serial powering (III)

-) accurate post Place&Route (P&R) power analysis and optimization:
- a. average power estimations under different activity conditions to assess power impact of different factors
- a. dynamic power variations analysis under the variety of operating conditions and at different time scales (1ns, 25ns, 100ns, 1µs, 10µs):

 a. simulations with Shunt-LDO confirmed decoupling effect

Low-power methodology for serial powering (IV)

- Presented methodology used for optimization of the pixel array logic:
 - **Example**: 1x4 distributed architecture \rightarrow most techniques applied to both digital architectures
 - Metrics:
 - area (density)
 - power \rightarrow "**peak power**" is obtained assuming 1 µs averaging time constant
 - hit loss (for memory overflow)

8x8 digital core, hits and triggers activity TYPICAL corner	Average Power per pixel (µW)	Peak Power per pixel (µW)	Area Utilization	[<i>S.Marconi et al.,</i> TWEPP 2016]
1. TOT counters, flip-flops for TOT storage, 7 mem, asynch read	4.8	6.26	89%	
2. No TOT counter, latches for TOT storage, 7 mem, asynch read	5.6	6.54	85%	
3. TOT counters, latches for TOT storage, 7 mem, asynch read	4.98	5.8	80%	
4. TOT counters, latches for TOT storage, 7 mem, synch read	4.84	5.6	80%	
5. TOT counters, latches for TOT storage, 8 mem, synch read	5.2	6.1	82%	
6. Same as 5. with Integrated Clock Gating cells	4.68	5.38	80.5%	

- Results: area improved, hit loss reduced (additional memory), power variations reduced
- Further optimizations ongoing (multi-bit latches, clock tree optimisation, etc ...)

CONCLUSIONS AND FUTURE WORK

- Conclusions
 - High-level simulation and verification framework with enhanced reusability available
 - Selected architectures for the pixel array logic:
 - $\circ~$ performance assessed and compared
 - o architectures further optimized for area, power and efficiency
 - power methodology used to guide design choices
 - Radiation: SEU to be taken into account in the verification process (TID not discussed in this presentation)
- Main further developments:
 - Finalize pixel array logic for RD53 big scale prototype
 - Possibly: further power optimisation to reduce system budget
 - Extensive verification under radiation: design to meet timing with TID and simulate SEUs

BACKUP

Low-power methodology for serial powering (II)

