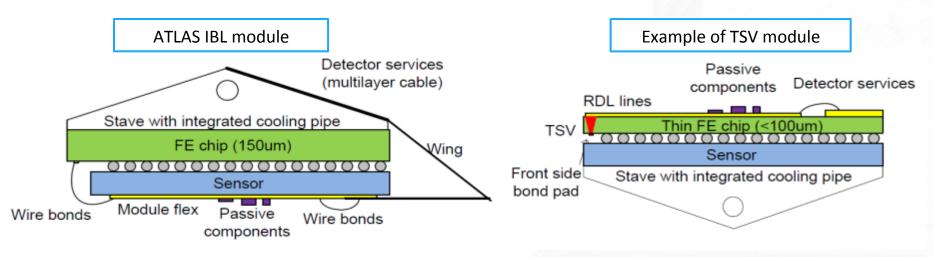


TSV developments at U Bonn

WP 4 Session Fabian Hügging on behalf of U Bonn Group



AIDA-2020 2nd Annual Meeting, Paris - 06/04/2017

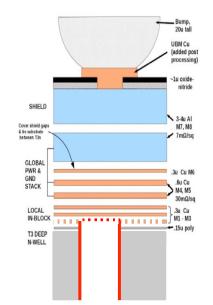
Bonn/CPPM TSV project

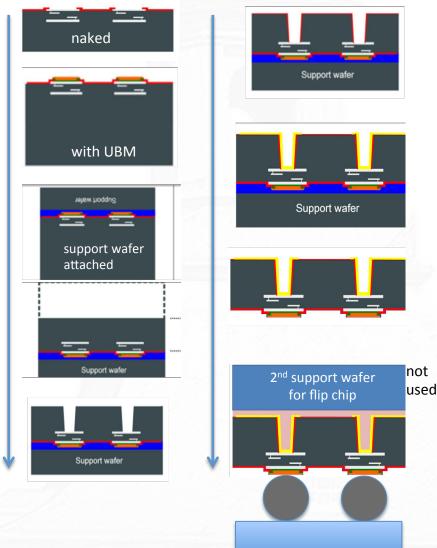
- The goal of the project is to develop modules for ATLAS pixel detector at the HL-LHC using a via last TSV process
 - Post-processing technology applicable on existing FE electronics
 - Dead area at the chip periphery can be reduced
 - → Compact, low mass hybrid pixel modules with minimal modification to the FE layout and using standard CMOS technology
 - \rightarrow no wire bonds needed if combined with new fley hybrid interconnection methods
 - → Potential for 4 side abuttable modules using dedicated sensor layout
- Modules with TSV can be used for the outermost detector layers at the HL-LHC to provide full detector coverage over the large area

huegging@physik.uni-bonn.de

AIDA-2020 2nd Annual Meeting, Paris - 06/04/2017

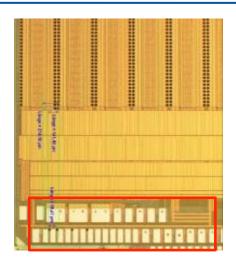
ATLAS FE-I4 TSV Run

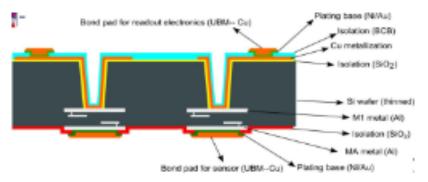

TSV modules using FE-I4 (ATLAS IBL chip): 160µm thick, 2 x 2 cm²


use straight vias with aspect ratio 3.5 : 1

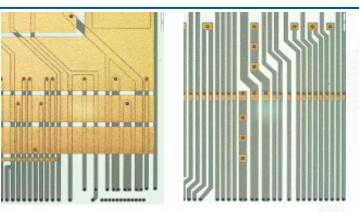
Goal: demonstration of TSV/RDL processing together with solder bump bonding method on 8" FE-I4 wafers thinned to 160µm (3 wafer pilot run)

<u> </u>		
1		

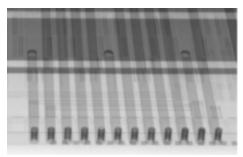

2-layer RDL

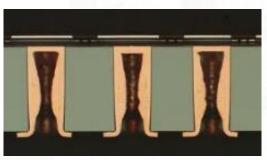


ATLAS FE-I4 TSV Run: Status



- Wire bond pad area for TSV contact
- Via from backside
- Liner filled TSV




TSV schematical cross section

huegging@physik.uni-bonn.de

Two designs of Backside RDL and pad metallisation

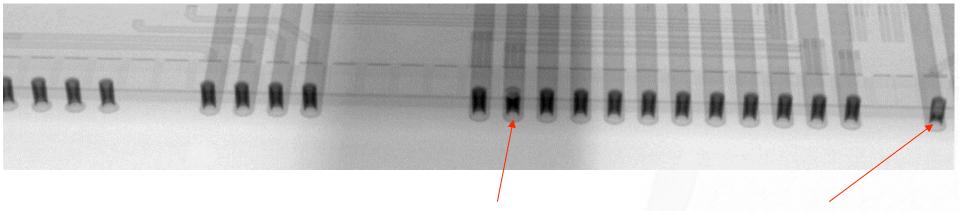
ATLAS FE-I4B with Cu-filled TSV (x-ray and cross section)

- UBM on ATLAS FE-I4 wafer
- TSV formation on ATLAS FE-I4 wafer
- Functional test of ATLAS TSV chips
- Samples for module assembly available?

All pictures courtesy of Fraunhofer IZM, Berlin.

AIDA-2020 2nd Annual Meeting, Paris - 06/04/2017

ATLAS FE-I4 TSV Run: Results


X-Ray Check of Via Filling:

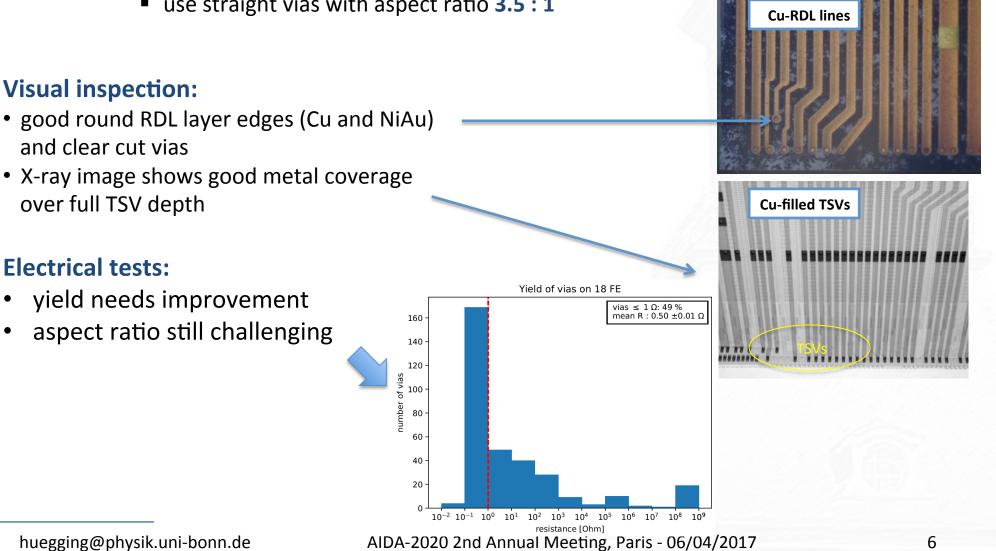
- Easy non-destructive method to check the filling result
- High resolution x-ray necessary
- Wafer can be stored in sealed envelope
- Full wafer inspection time consuming and not 100% clear

ATLAS FE-I4 Chip: TSV x-ray check, RDL side down

universität

TSV not completely filled, void at via bottom

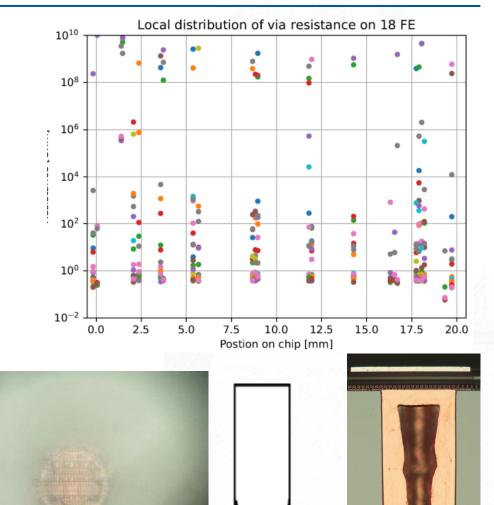
TSV with poor side wall metallization but connected to M1


Picture courtesy of Fraunhofer IZM, Berlin.

ATLAS FE-I4 TSV Run: Results

universitätbon

TSV modules using FE-I4 (ATLAS IBL chip): **160µm** thick, **2 x 2 cm²**

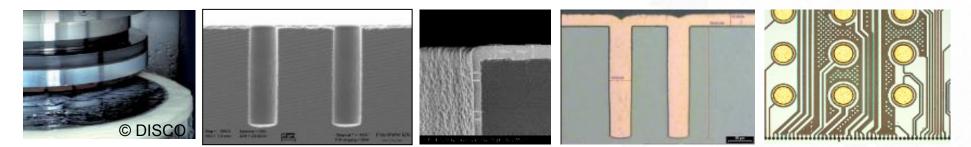

use straight vias with aspect ratio 3.5 : 1

TSV Resistance measured on 18 FE chips

- Mean via resistance measured on FE-chips:
 - 18 modules tested
 - No correlation with TSV position on chip
 - All modules similar
- Mainly 2 effects caused the failures:
 - Insufficient copper plating due to rework
 - faulty sputtering of seed layer
 - no copper at via bottom
 - Incomplete Via etching
 - controlled optical
 - layer M1 is meshed
 - passivation layer beneath M1 needs to be etched through completely

PoC project: Advanced Through Silicon Vias for Pixel Detectors

- Goal: establish high yield TSV + RDL process for pixel modules
- straight vias through (ultra?) thinned FE-I4 wafers and chips: note 2x2 cm² chip size
- 80 120 μm thickness (to be optimized),
- aspect ratio = 2 : 1
- one handle wafer step needed
- complete development including flip-chipping process for the final pixel module


Challenges of the project

- reliable TSV fabrication ... yield hoped/expected to be <u>much</u> better than for project 2
- thin (o(100 µm)) wafers are <u>needed</u> for the goal of "large yield" challenge is the handling of large and very thin wafers/chips
- surprises during flip-chipping can also be an issue

huegging@physik.uni-bonn.de

- 1. Wafer Thinning: Grinding, Wet Etching, DRIE
- 2. TSV Si-etching: DRIE BOSCH Process
- 3. TSV-Insulation: TEOS, PE-CVD, SA-CVD, Polymer
- 4. Adhesion-/Barrier-/Seed-Layer: Ti (TiW, TiN, Ta(N)) / Cu HI-PVD
- 5. Via filling: ECD Cu bottom up filling, liner filling
- 6. RDL / UBM pad metallization

All pictures courtesy of Fraunhofer IZM, Berlin.

□ WP1:

Process optimization for very thin (80-120 μm) readout wafers

□ WP 2:

- Design optimization of the TSV and RDL layers
- **WP** 3:
 - TSV run with optimized RDL design on FE-I4 wafer batch incl. electrical tests
- **W**P4:
 - Optimization of bumping and flip-chip using (ultra?) thin TSV chips to sensors

WP 5:

Characterization of TSV chip sensor assemblies

WP1 – Process Modifications/Optimization:

•Reduced wafer thickness: $160\mu m \rightarrow 120...90\mu m$:

- + better visibility of via bottom after TSV etch / oxide etch
- + improvement of TSV filling behaviour
- higher risk of wafer breakage

• Fabrication of TSV Daisy Chain Testwafer with dedicated M1 setup layer:

- +/- setup of TSV etch process but without poly-Si layer
- additional wafer fabrication (process steps)

Test of backside carrier wafer process:

- + higher stability up to dicing process
- + stabilisation of FE-I4 chip during flip chip process
- carrier release after flip chip assembly
- more cleaning steps necessary

WP4 new interconnections techniques of hybrid pixel detectors:

- Continuation of our collaboration with IZM and CPPM for a via last TSV process on ATLAS Pixel FE wafer:
 - demonstrated with good results on FE-I2/3 assemblies
 - − 1st Process with FE-I4 wafers → some encouraging results although rework of TSV filling but overall yield is not satisfactory
 - Next step: 2nd FE-I4 TSV run with optimized process parameters → Goal is building full assemblies using complex RDL on chip backside.
 - Funding received through PoC program of AIDA-2020
 - Long term plan: Move on with 65nm CMOS wafers from RD53
 - check feasibility → high capacity/inductivity of TSV could have impact on high speed links