

TSV development with CEA Leti in the FEI4 chip

R. Bates, C. Buttar, L. Flores / Glasgow University G. Pares / CEA LETI A. Macchiolo, R. Nisius / MPI E. Gkoukgoussis, A. Lounis / LAL M. Campbell, K. Dette, H. Pernegger, P. Riedler, D. Schaefer / CERN EP Department

Goal

- WP4 (NA3) Micro-electronics and interconnections:
 - Task 4.4 Interconnections and TSVs.
- Interconnection of 65 nm CMOS readout chips to silicon pixel sensors by using through-silicon vias (TSVs) across the substrate, full qualification and testing.
- Fine pitch bump bonding techniques will be qualified by this WP

TSVs and RDLs with ATLAS FEI4 FE chips

- Project started with CEA Leti on TSV-last process in FE-I4 chips
 - Connect chip M1 metal layer from front to back of chip via TSVs
- Front side processing with either UBM only or bumps
 - UBM only \rightarrow solder on sensors
 - Bumps \rightarrow UBM on sensor
- Back side processing RDL
 - Specific FE-i4 layout for laser soldering, same specs as Medipix
 - Pad layout to compensate thermal stressed during re-flow after flip-chip (demonstrated to work in previous project between Glasgow and LETI)

TSVs in FEI4

- Require access to M1 from the chip backside
- Re-spin of FEI4 wafers have reduced poly-Si to aid TSV etch
 - During MPI TSV project with EMFT understood that there was poly-Si under M1
 - Poly-Si causes issues with the TSV etch

Front side UBM

- Electrical characterization
 - Results in line with expectation on UBM layer
 - Critical dimensions
 - Sheet resistance
 - Planar insulation
 - Contact with Al pads

Contact structure on pad

UBM pads – optical inspection

TSV last – Oxide etch mask

- IR image of Oxide DRIE mask
- Circles are mask
- Good alignment to M1

TSV etched through to the M1

• TSV etched through silicon down to M1

- TSV lined using full wafer Silicon Oxide & Silicon Nitride deposition
- Etch back full wafer to open the oxide/nitride on the bottom of the TSV
- Damascene process to fill with copper

- 3 µm oxide liner on inside of TSV walls
- All oxide removed at the bottom of the via

FEI4 ReDistribution Layer

- RDL design for FE-i4B
 - Copper layer on back side of chips
 - Large solder pad array compatible with direct laser soldering
 - Solder pads over full chip to compensate thin die bow – eases flip-chip
 - Include probe pads/wire-bond pads near TSV to allow testing with mirrored test card after processing or wire-bonding after processing
 - Designed at CERN and reviewed by LETI and ATLAS module experts, mask processed at LETI
- RDL metal stack compatible with Bump Grid Array solder technology

Lithography for RDLs

- Wafer is coated uniformly with a thin copper seed layer
- Resist is deposited and developed to realise the RDL pattern
- Electroplating of thick copper in the exposed RDL pattern

 TSV filled during this stage
- Blank etch to remove thin seed layer

First RDL results

- Excessive copper applied
 - Aim was to reduce TSV resistance
 - -~ 6-8 μm requested c.f. standard thickness < 5 μm
- Caused delamination of large RDL laser solder pads
 - Pulling away underlying oxide layer as well
 - 1 of the 3 wafers not so bad and useable for module building
- TSV contact on front side metal : low and repeatable contact between 2 ground TSVs
 - 6 Ohm including RDL line and probe resistance

Frist Wafers

- 4 wafers started
 - 1 broke during processing
 - 2 had bad RDL delamination
 - 1 has good RDL in wafer central region

Frist wafer testing

- Wafer level testing started Jan 2017
- Soon realised that there was an RDL error

- VDDD line connected to GND bus
 - Error during translation of RDL design to wafer design software
 - Chip not testable
- Probed all power lines and currents reasonable
 - TSVs connected to M1 and isolated from wafer
- Wafers retuned to LETI for FIB
 - Only central die edited due to FIB reach
 - Error corrected
 - Tested on probe no shorts!

Post TSV testing

- Wafer level chip testing
 - On probe station
 - Arrived yesterday
 - Electrical contact to chip via TSV, probe on mirrored pad array

Next steps

- Poor wafers from first run will be diced and used for flip-chip and soldering trails
- Second run of wafers being processed at CEA LETI
 - Front side with Solder bumps
 - Front side processing finished
 - Bumps inspected and appear perfect
 - Ready for transfer to support wafer for backside processing
- Aluminum flex PCB for laser soldering
 - Designed
 - Soldering trails with dummy parts taking place
 - Using Medipix scrap parts
- Flip-chip to sensor to take place after bare chip testing
 - Sensors with solder bumps ready at Advacam

Summary

- TSV and laser solder module concept worked out
- CEA LETI TSV process well demonstrated on Medipix chip set
- FEI4 chip set modified to aid TSV formation
- TSV + RDL designed and processed
 - Contact to M1 and low electrical resistance
- Wafer probing (re-)started
- Testing and laser solder processes understood

Backup

Bump deposition at CEA LETI

- Developed process for SnAg solder capped copper pillars on FEI4 200 mm wafers
 - Minimum pitch 50 μ m in one direction
 - 10 μ m Cu & 8 μ m SnAg solder cap
 - Electro-chemical deposition of bumps on seed layer
- High yield (<99%) obtained after significant effort on process
- Future work to transfer this to 300 mm wafer line for RD53 pixel chip

RD53 chip preparation

- Process will be different on RD53 wafers
 - Difference in tool set on 200 mm and 300 mm wafer lines
 - 50 μm pitch in both x & y direction
 - Difference in chip surface topology
- Building a test wafer for bump deposition and wafer handling tests
 - Presently obtaining quotes
- Daisy chain feature to measure bump and flip-chip yield
- Allows:
 - Early access to 300 mm wafer bump deposition experience
 - 300 mm wafer handling, thinning and dicing
 - Use of automated visual inspection tool
 - Flip-chip practice on large high density arrays

Hybrid pixel modules

• Hybrid pixel are:

Inherent limitations

- Wire bonds connect FE to flex:
 - Oscillation in magnetic field
 - Protection required or desired "To pot or not to pot"
 - Limit on envelopes
- Access to bond area on FE limits the sensor active area (not 4- side buttable)
- Requires expensive die-to-die assembly
- Wire bond Inductance limits signal speed
- Edge access -> power distribution over large chip challenging

TSV module concept

Flex

Sensor

- Using a TSV last process
 - Use existing chip set with post-processing technology
 - Build on Medipix experience with CEA Leti
- Remove wire bonds from the module
 - Connect flex via solder balls on back of chip
 - Less fragile module
 - Reduced interconnect inductance
- Remove wire bond pads
 - Reduced chip edge

FEIx

Wire-bond

Stave surface

Wirebond less TSV enabling technologies

TSV-last + RDL

- TSV connect chip M1 from front to back of chip
 - TSV aspect ratio 2:1
- RDL distributes FEI4 connections over full chip surface.
 - Do not need fine-pitch connections.
 - Power can be brought to chip at several places , not just on the edge

Direct laser soldering: flex to FEIx

- Thin 2-layer Al flex
- No glue layer needed
- Connections are solder 1-by-1, module stays at RT
- Re-workable

TSV + RDL project in FEI4

- Working with CEA LETI on TSV last process in FEI4
 - Connect chip M1 from front to back of chip via TSV
- Front side processing in two batches
 - UBM only (4 wafers) solder on sensors
 - Bumps (3 wafers) UBM on sensors
- Backside RDL distributes all FEI4 connections over full chip surface
 - Same specs as Medipix but with dedicated FEI4B layout for laser soldering to flex
 - Pad layout to compensate thermal stresses during reflow after flip chip (SCL)
 - Stress compensation has been previously demonstrated between Glasgow & LETI

TSV process description

- Under Bump Metallisation is deposited on the front side of the wafer.
 - Identical to the step used normally by the bump bonding suppliers
 - Finished die can be flip-chip assembled to sensors with solder bumps.
 - Second batch with have solder bumps
- Wafer thinning
 - Wafer front side bonded using a temporary adhesive to a dummy support wafer.
 - The wafer is thinned to 120 um (2 times the diameter of the TSV opening).
- TSV formation
 - Vias are drilled in the wafer using deep reactive ion etching
 - Vias are coated conformally with an insulating layer.
 - Contact holes are etched through the insulation in the bottom of the vias
 - 5um thick Cu layer is deposited on the side of the vias and on the back side of the wafer.
- Redistribution layer
 - The Cu layer is then etched to form the redistribution layer on the backside.
 - The back side of the wafer is passivated and the openings for the solder contacts etched.
 - UBM metallization deposited on the solder pads the same way as on the front side.
- Wafers are probed for electrical functionality
- Die release
 - Wafers are released from the support wafer and transferred onto a dicing tape.
- $_{06/04/20}$ Wafers are shipped for subsequent dicing and flip chip assembly.

