

Advanced European Infrastructures for Detectors at Accelerators

Report on Trigger Logic Unit status

P. Baesso – University of Bristol Paris, 4th April 2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168.

New TLU design

New hardware design based on the successful miniTLU one

- Increased number of DUT
 - from 3 to 4
- Increased number of trigger inputs
 - from 4 to 6
- Multiple clock generation options
 - On-board oscillator
 - DUT
 - Differential LEMO
 - Highly configurable clock chip
- Replaced mini-HDMI with HDMI connector for DUTs interface
- Fast threshold discriminators for trigger detection
- Firmware port to work with Xilinx series 7 devices

New TLU status overview

- 2 boards in Bristol + 1 shipped to DESY
- Completed the test on hardware
 - No obvious failures/problems detected
 - A few tweaks desirable for next iteration
 - Schematic for next iteration almost completed
- Completed porting of firmware from old to new hardware
 - Maintain all functionalities from old TLU
 - Tested new functionalities (clock generator, discriminators)
- Basic TLU producer working with EUDAQ2

New TLU hardware

Next hardware implementation

- Maintain FMC connector
- Include SFP cage and CDR chip
 - Recover data and clock from optical or copper link
- Add LED indicators on front panel
- Core circuit maintained from tested design
- Current work in progress
- 1, 2 weeks away from submission to manufacturer

Number of PCB to manufacture depends on requests & funds available. Still in time to add extra features. Please talk with D. Cussans or me if interested.

- Transition from FPGA Series 6 to Series 7 forced us to re-think a few solutions adopted for the miniTLU
 - All blocks now tested and working on bench
 - Still need to implement a more realistic test-setup (master-slave)

- If new hardware feature are added, the firmware will need to be updated
 - The current version would still work (new features disabled)

TLU firmware block diagram

- Testing TLU latency
- Current firmware direct port of miniTLU
 - Includes extra "safety" registers
 - Not yet optimized to reduce latency

Latency test (non optimized)

INPUT PULSE

Interfacing with EUDAQ2

Integration with EUDAQ2:

- Successfully compiled from sources, added classes for new hardware (clock chip, IO expanders)
- Configure working correctly (including clock chip)
- More development/testing needed for run and data writing
- A stable version ready to be pushed on Yi's git repository for testing/merging with his code

Documentation

- Started working on documentation "on the go"
 - Still a very early draft but provides some guidelines to setup and start using the board
- Far from being near to completion, but at least it is moving forward

• TLU status progressed on all fronts (hardware, firmware, software, documentation)

- We now have a deployable unit
 - Polishing needed on all fronts
 - In this phase it would be useful to have some "real-world" tests, especially with EUDAQ2
- 1-2 weeks away from sending schematics to manufacturer for new boards
 - Still time to add a few features
- Once submitted, 4 weeks to get hardware + time for testing
- Firmware in good status
- We are on time to meet milestone 66 (September 2017) with a fully functional TLU

