

3D pixels sensors in Trento: update on activities and plans

<u>Gian-Franco Dalla Betta</u>, Roberto Mendicino, DMS Sultan

University of Trento and TIFPA INFN, Trento, Italy gianfranco.dallabetta@unitn.it

- D7.1 : Simulation of 3D pixel sensor cells [M18] Simulation of new sensor cells for thin 3D sensors with fine pitch, reduced column diameter and inter-column distance. Simulation of charge collection properties of 3D sensors with thinner substrates and determination of optimal thickness for pixel detectors working at HL-LHC. (Task 7.2)
- 2nd year summary, work in progress and next steps

New thin 3D on 6" @ FBK

- Single-sided process (3D-SS)
- "Thin" active layer: SiSi (or SOI)
- Ohmic columns depth > active layer
- Junction columns depth < active layer
- Reduction of column diameter to 5 um
- Holes partially filled with poly
- Very slim or active edge

di Trento

G.-F. Dalla Betta

TCAD Simulations: full 3D approach

- Domain: 1/8 of pixel
- Thickness: 100um

Paris, April 5, 2017

• n⁺ column depth 75um

UNIN

• All technological details

CCE simulation approach 50x50

• Simplified simulation domain (~2d):

1 μm thick slice (1/4 or 1/8 of pixel)

- MIP (heavy ion model): vertical hits at several different positions representing different electric field values
- New Perugia radiation damage model
- Avoiding boundaries: no charge sharing
- Subtract leakage current
- 20-ns integration of current signals
- Average charge over all hit positions
- Normalization to injected charge
- Repeat at different bias voltage

Paris, April 5, 2017

di Trento

Average Signal Efficiency

- Very high average signal efficiency
- True values will be smaller due to pixel edge effects
- Significant variations of signal efficiency with hit position, increasing with fluence

1st FBK 3D-SS batch

- Ten wafers processed (completed Feb. 2016)
- Two different active thicknesses: 100 vs 130 μ m
- Several pixel layouts (small pixels with grid) FE-I4, FE-I3, PSI46, CHIPIX65, etc.
- Test structures: 3D strips and diodes

Paris, April 5, 2017

Measurements vs TCAD simulations

- From 3D diode measurements
- Very good agreement in C-V curves

G.-F. Dalla Betta et al., Vertex 2016

Good agreement in I-V curves but for the slope

(that depends on interface states, so far not included in the model)

G.-F. Dalla Betta

di Trento

Slim edge laser test

- Slim edge based on multiple ohmic columns developed for IBL (~200 μ m) M. Povoli et al., JINST 7 (2012) C01015, here made slimmer (~100 μ m) with reduced inter-electrode spacing
- Safe operation of 3D diode (50 μ m x 50 μ m design) tested with position resolved laser system
- High signal indicates extension of the depleted volume at the corner (~80 μ m at 70 V), in good agreement with simulations

3D diode neutron irradiation

Neutron irradiation at $5 \times 10^{15} n_{eq}/cm^2$ (JSI Lubiana, thanks to V. Cindro)

- Leakage current increases as expected:
 - Damage constant α ~ 4x10^{\text{-}17} A/cm
- Breakdown voltage also increases and is large enough wrt depletion voltage

3D diode: γ **-ray and proton irradiation**

Gamma irradiation at SANDIA, protons irradiation at LANSCE (thanks to M. Hoeferkamp and S. Seidel)

- Minor change of breakdown after gamma irradiation
- For proton irradiation, breakdown voltage increase comparable to neutron irradiation (but larger voltages observed with protons on strips at lower fluences)
 → breakdown likely occurs at junction column tips

G.-F. Dalla Betta

IR laser scan on irradiated 3D diode

Neutron irradiated sample ($5x10^{15} n_{eq}/cm^2$)

Comparison with Ramo's simulation

Neutron irradiated sample ($5x10^{15} n_{eq}/cm^2$)

G.-F. Dalla Betta

P-col

2nd FBK 3D-SS batch

- Funded by AIDA 2020 (processing) and by INFN (substrates and masks)
- Single side process (as shown before)
- 12 wafers (6") with 130 μm thick active layer: (8) SiSi and (4) SOI

2nd batch Wafer Layout

DMS Sultan, UniTN

- FE-l4
 - 50 x 250 (2E) std
 - 50 x 100 (1E+9E)
 - 50 x 50 (5E)
- PSI46dig (also with BOC option)
 - 100 x 150 (2E and 3E) std
 - 50 x 50 (1E)
 - 25 x 100 (1E and 2E)
- R4S
 - 50 x 50 (1E)
 - 25 x 100 (1E and 2E)
- RD53A (also with BOC option)
 - 50 x 50 (1E)
 - 25 x 100 (1E and 2E)
- CHIPIX65
 - 50 x 50 (1E and 2E)
 - 25 x 100 (1E and 2E)
- NA62
 - For timing studies

+ Test structures (strip, diodes, etc)

		- ·		
\cap \Box			\mathbf{P}	otto
JI'.	Dal	Ia.	D	tta

List of Pixel Sensors

	Sensor Type	Multiplicity	Comment	
	FEI4 50X250 2E	x2	IBL Generation complaint, Pixel Capacitance	
	FEI4 50X250 5E	x2	Pixel Capacitance ~250fF	
	FEI4 50X250 1E9E	x1	Pixel Capacitance ~50fF and ~450fF	
	PSI46 2E	x4	Pixel Capacitance ~100fF	
	PSI46 2E BO	x4	Pixel Capacitance ~100fF	
	PSI46 3E	x3	Pixel Capacitance ~150fF	
	PSI46 3E BO	x3	Pixel Capacitance ~150fF	
	PSI46 50X50 1E with Grid	x2	Pixel Capacitance ~50fF	
	PSI46 50X50 1E with Grid BO	x2	Pixel Capacitance ~50fF	
	PSI46 25X100 1E with Grid	x1	Pixel Capacitance ~50fF	
	PSI46 25X100 1E with Grid BO	x1	Pixel Capacitance ~50fF	
or	PSI46 25X100 2E with Grid	x3	Pixel Capacitance ~100fF	
sus	PSI46 25X100 2E with Grid BO	х3	Pixel Capacitance ~100fF	
Se	R4S 25X100 1E	х3	ROC4Sense, Pixel Capacitance ~50fF	
xe	R4S 25X100 2E	x4	ROC4Sense, Pixel Capacitance ~100fF	
- b i	R4S 50X50	x5	ROC4Sense, Pixel Capacitance ~50fF	
	RD53A 50X50	x8	ROC4Sense, Pixel Capacitance ~50fF	
	RD53A 25X100 1E	x3	Pixel Capcitance ~50fF	
	RD53A 25X100 2E BO	x2	P-Poly Cap 3μm, Pixel Capacitance ~100fF	
	RD53A 25X100 2E	x5	Thinner P-Poly Field has designed due to space limit, Pixel Capacitance ~100fF	
	RD53A 64X64 50X50-2E	x6	Pixel Capacitance ~100fF	
	RD53A 64X64 50X50	x8	Pixel Capacitance ~50fF	
	RD53A 64X64 25X100-1E	x6	Pixel Capacitance ~50fF	
	RD53A 64X64 25X100-2E	x8	Pixel Capacitance ~100fF	
	NA62 50um Hexagon	x2	Inter-electrode distance remains 50µm in	
			hexagonal pixel structure	
Strip Sensor	Strip 80X80	x7	Per Strip Capacitance ~3.2pF	
	Strip 50X50	x7	Per Strip Capacitance ~5pF	
	Strip 25X100 1E	x7	Per Strip Capacitance ~5pF	
	Strip 25X100 2E	x7	Per Strip Capacitance ~10pF	

G.-F. Dalla Betta

Paris, April 5, 2017

RD53A Pixel Sensors

RD53A (50X50)

RD53A (25X100-1E)

Also available as 64x64 pixel arrays (CHIPIX65 and FE65-p2)

RD53A Pixel Sensors (25x100-2E)

G.-F. Dalla Betta

Paris, April 5, 2017

Paris, April 5, 2017

Alternative layout options

Exploring several new layouts with 3D diode test structures

Hexagonal cells cluster

Very small pitch (25x25 $\mu m^2)$ diode with poly-Si column connections

Conclusion and outlook

- Milestone and related deliverable D7.1 accomplished at M18
- Characterization of irradiated samples from 1st FBK batch in progress:
 - diodes in Trento and Albuquerque
 - strips in Freiburg
 - arranged for pixel module irradiation at CERN and KIT
- More simulations being performed, also involving different bulk damage models
- Introducing surface damage model for breakdown investigation in irradiated samples
- Layout of 2nd FBK batch (funded by AIDA 2020) completed, fabrication under way (due by ~July 2017)

G.-F. Dalla Betta

BACK-UP SLIDES

G.-F. Dalla Betta

Simulated breakdown voltage Electric field, 50x50, 160V

Cut Column

