Update on small-pitch active-edge planar sensor studies for the CLIC vertex detector

AIDA-2020 second annual meeting April 5th, 2017

Dominik Dannheim, Andreas Nürnberg (CERN-LCD)

Outline

- Introduction
- •Timepix3 thin active-edge sensor studies
- •CLICpix thin active-edge sensor studies
- •CLICpix2
- Summary/Outlook

Thin sensor studies for CLIC

Challenging vertex-detector requirements at CLIC:

- Ultra-thin (50 µm active silicon)
- High spatial resolution (~3 μ m \rightarrow ~25x25 μ m² pitch)
- Precise timing (~10 ns)
- \rightarrow R&D on hybrid detectors with ultrathin planar sensors
- Timepix3 r/o ASIC (55x55 μm²) to test hybrid assemblies with ultra-thin active-edge sensors (50-150 um)
- More recently: CLICpix r/o ASIC (25x25 μm²) bump-bonded to ultra-thin active-edge sensors (50, 200 μm)

CLICpix with 50 μm sensor

April 5, 2017

Active edge sensors on Timepix3 ASICs

- Study feasibility of thin sensors with active edge using Timepix3 ASICs
- ▶ 50 μ m to 150 μ m thick n-in-p sensors, 55 μ m pixel pitch
- Deep Reactive-Ion Etching is used to cut the edge of the silicon sensor
- ► Implantation on the sidewall of the sensor ⇒ extension of the backside electrode on the edge ⇒ Charge created in the edge region can be collected by the first pixel
- Reduction of inactive area, good coverage without overlapping sensor tiles, reduction of material budget

Guard-ring layouts

- ► 4 different guard ring layouts implemented
- Edge distance is defined as the distance between the last n-implant and the cut edge
- ► 20 µm edge, no guard-ring

► 23 µm edge, floating guard-ring

► 28 µm edge, GND guard-ring

► 55 µm edge, GND guard-ring

Edge performance evaluation

Performance at the edge:

- Consider only tracks close to the sensor edge
- Tracks are periodically mapped into a 2 by 2 pixel cell
- For illustration, end of the periodic pixel matrix (dashed line) and physical edge of the sensor (solid line) are indicated in the following plots

Efficiency and signal at the edge

Pos. rel. to edge / mm

► 50 µm thick, 28-groundGR

► 50 µm thick, 55-groundGR

► 50 µm thick, 20-noGR

► 50 µm thick, 23-floatGR

► 50 µm thick, 28-groundGR

TCAD simulation

- Implementation of different edge geometries and guard ring layouts in Synopsys Sentaurus
- ▶ 2D simulation \rightarrow cut at center of pixel implant
- Static (electric field) and transient simulation (MIP scan)
- Simplified: noise, threshold and landau fluctuations not included
- For better comparability in 2D simulation: restrict data to tracks passing close to pixel center

Electric field for different guard-ring layouts

- $\blacktriangleright~\sim 20\,\mu m$ edge, 50 μm thick
- Electric field and depleted region extend towards the edge

- Field lines end at the last pixel
- Expect no charge loss

- Most field lines end at the last pixel
- Small charge loss

- Some of the lines end at the GR
- Significant charge loss to GR

Current breakdown simulation

- Total current density
- ► 50 µm thick, grounded guard ring
- Breakdown occurs between the edge and the first implant

April 5, 2017

CLIC active-edge studies

10

Current breakdown simulation vs. data

- 50 µm thickness: no guard ring and grounded guard ring break down around 150 V
- Similar distance between edge and first grounded implant
- Floating guard ring smoothens potential drop
- Lower electric field at given bias \rightarrow higher V_{bd}
- Comparison to measurements not easy, measurement not very reproducible
- Extra row of bumps influencing floating guard ring and/or active edge

 V_{dep} between -7 V (50 μ m) and -15 V (150 μ m) \rightarrow all assemblies can be operated well beyond V_{dep}

I/V – dependence on sensor thickness

- Thicker devices, grounded guard ring, 55 µm edge
- ► For given guardring layout, field at the surface not depending on the sensor thickness → V_{bd} not depending on the thickness

I/V for new assemblies

- 4 additional 50 μm sensor assemblies produced by Advacam
 - modified bump mask: first row in Timepix3 not bumped (used normally for grounding the guard ring)
 - \rightarrow better suited for floating and no GR (no risk of shorting edge)
 - 1) No GR, 20 μ m edge \rightarrow improved breakdown ~125 V
 - 2) No GR, 50 μ m edge \rightarrow similar breakdown as 1) (design previously not tested)
 - 3) Floating GR, 52 μ m edge \rightarrow high breakdown voltage ~180 V (design prev. not tested)
 - 4) Floating GR, 23 μ m edge \rightarrow breakdown ~90 V, similar to previous assemblies

Transient simulation

- Create charge along particle path, constant ionization
- Collect charges at the electrodes
- Record transient current in electrodes
- Integrate to obtain charge signal
- Scan particle over the edge region
- Example for a 50 μm thick sensor with grounded guard ring:

de

Signal at the edge – TCAD vs. data

CLICpix planar sensor assemblies

- Single-chip Indium bump-bonding process for 25 µm pitch developed at SLAC
- Assemblies produced with 200 µm, 150 µm and 50 µm n-in-p sensors
- 200 µm assembly tested in AIDA telescope at SPS in 2015
- This talk: 50 µm assembly tested in Timepix3 telescope at SPS in August 2016

CLICpix with 50 μ m thin active-edge sensor

- Advacam 50 µm thin planar
 n-on-p sensor with active edge
- Assembly shows large dead regions and can only be biased up to 5 V
 - \rightarrow Possible improvements in bump-bonding process identified, more assemblies to come
- Our first 50 μ m assembly with 25 μ m pixels \rightarrow Testbeam \rightarrow focus analysis on good regions
- No edge efficiency results

CLICpix thin-sensor analysis results

▶ 5V bias, $\sim 1300 \, \text{e}^-$ (lowest possible threshold for this assembly)

- DUT performance as expected from 50 µm thin sensor at this threshold
- Telescope pointing resolution of $\sim 2\,\mu m$ allows for in-pixel studies even with 25 μm small pixels

CLICpix thin-sensor bias scan

- Bias scan from 0 V to 5 V
- Very low depletion voltage around 1V

- Cluster size and resolution almost independent from bias voltage
- Efficiency constant above full depletion

April 5, 2017

CLICpix thin-sensor threshold scan

► Threshold scan from 1300 e⁻ to 4000 e⁻

High efficiency reached at lowest possible threshold, non-responsive regions masked

- ► Efficiency drops quickly with threshold, as expected for 50 µm thin sensor
- $\blacktriangleright \Rightarrow$ Threshold has to be set as low as possible for efficient operation

CLICpix2

New CLICpix2 65 nm ASIC:

- 4x larger matrix
- reduced threshold
- Increased TOA and TOT dynamic range
- Currently under test with new Caribou r/o system
- Additional submission with RD53 and MPA (submission end of May 2017)
 - \rightarrow access to full wafers
 - \rightarrow bump bonding process development

	CLICpix	CLICpix2	
Matrix size [pixels]	64 × 64	128×128	
Active area [mm ²]	1.6 imes 1.6	3.2 × 3.2	
ToT counter	4 bits	5 bits	
ToA counter	4 bits	8 bits	

CLICpix2

Summary/Outlook

- Thin planar active-edge sensors with Timepix3 readout
 - Guard-ring design affects edge signal, efficiency and I/V breakdown
 - T-CAD simulations compatible with measurements (D7.2, D7.6)
 - >99% efficiency up to physical edge for 50 μ m thick sensors
 - Improved I/V breakdown with new bump mask
- 50 µm thin planar active-edge sensor with CLICpix readout
 - Low bump yield, but assembly is operational
 - Small amount of charge sharing in thin sensor limits resolution
 - Degraded detection efficiency (~97%) due to high threshold (1300 e⁻)
- Outlook:
 - CLICpix2 with larger matrix and reduced minimum threshold
 → expect improved resolution, increased efficiency
 - New active edge sensors from FBK: CLICpix2, Timepix3 footprints
 - Wafer-bonding trials with wafers from RD53/MPA 65 nm submission

Thanks to everyone who provided material for this talk!

Additional material

CLIC vertex-detector requirements

• efficient tagging of heavy quarks through precise determination of displaced vertices:

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot \text{GeV}^2/(p^2 \sin^3 \theta)}$$
$$a \sim 5 \,\mu m, \ b \sim 15 \,\mu m$$

- → good single point resolution: σ_{SP} ~3 µm
 - → small pixels <~25x25 μ m², analog readout
- → low material budget: $X \leq 0.2\% X_0$ / layer
 - \rightarrow corresponds to ~200 μ m Si, including supports, cables, cooling
 - → low-power ASICs (~50 mW/cm²) + gas-flow cooling
- 20 ms gaps between bunch trains \rightarrow trigger-less readout, pulsed powering
- $B = 4 T \rightarrow Lorentz$ angle becomes important
- few % maximum occupancy from beam-induced backgrounds \rightarrow sets inner radius
- moderate radiation exposure (~10⁴ below LHC!):
 - NIEL: < $10^{11} n_{eq}/cm^2/y$
 - TID: < 1 kGy / year
- Time stamping with ~10 ns accuracy, to reject background
 - \rightarrow depleted sensors (high resistivity / high voltage), readout with precise timing

CLIC tracker requirements

 Momentum resolution (Higgs recoil mass, H→μμ, BSM leptons): σ(p_T) / p_T² ~ 2 x 10⁻⁵ GeV⁻¹

 \rightarrow 7 µm single-point resolution

 \rightarrow ~1-2% X0 per layer (low-mass supports, cabling and cooling)

- few % maximum occupancy from beam-induced backgrounds
 - \rightarrow Time stamping with ~10 ns accuracy, to reject background
 - \rightarrow Readout granularity ~ 50 μ m x 1-10 mm (t.b.c.: large pixels / small strips?)

Vertex detector layout

- Systematic optimization of geometries:
 - background occupancies
 - detector performance (flavor tagging, tracking resolution)
 - engineering constraints (cooling, powering, supports)
- Large coverage: θ>7° (lηl<2.8)
- 3 double layers in barrel and endcaps
- 0.84 m² area, ~2G pixels (25 μm²)
- R_i ~ 30 mm (background-occupancies)
- spiral endcap geometry (air flow cooling)
- Low material budget:
 0.4%X₀ per double layer
- Single-point resolution ~3 μm

Outer tracking layout

- Outer tracker:
 - 6 barrel, 7 forward layers, material budget 1-2%X₀ / layer
 - 90 m² silicon surface
 - >=8 hits for θ >8° (vertex+tracker)
 - Single-point resolution $\sim 7 \ \mu m$
 - beam pipes with conical sections (reduction of beam-induced backgrounds)
 - Layout optimized for tracking performance and backgrounds

April 5, 2017

CLIC active-edge studies

10³

 p_{T} resolution vs p

 10^{2}

Transverse momentum p [GeV/c]

10⁻⁵

10¹

Backgrounds in inner tracking region

CLIC_ILD incoherent pairs + $\gamma\gamma \rightarrow$ hadrons: silicon hits, no safety factors

- Train occupancies up to 3% in vertex region (including clustering and safety factors)
- moderate radiation exposure, ~10⁴ below LHC

Region	Readout granularity	Max. occup.	NIEL [n _{eq} /cm²/y]	TID [Rad/y]
VXB	20 µm x 20 µm	1.9 %	4x10 ¹⁰	20k
VXEC	20 µm x 20 µm	2.8 %	5x10 ¹⁰	18k
FTD pixels	20 µm x 20 µm	0.6%	2.5x10 ¹⁰	5k
FTD strips	10 cm x 50 μm	290 %	1x10 ¹⁰	700
SIT	9 cm x 50 µm	170%	2x10 ⁹	200
	active-edge studies			29

April 5, 2017

CLICpix: radiation qualification

- Moderate radiation-tolerance requirements at CLIC: <100 kRad TID
- However: building blocks can be re-used for RD53 (~1 GRad required)
- Results of radiation testing useful for gaining deeper understanding of the chip
- → performed radiation test up to 1 GRad (up to 150 kRad/minute) in calibrated X-ray setup

- No significant changes observed in sub-MRad range relevant for CLIC
- For >250 MRad: PMOS switches in current mirror fail
- → Break-down of analog power (note: band gap foreseen for final chip, instead of current mirror)
- digital components kept working normally

S. Kulis, P. Valerio