Latest news from big demonstrator designs and tests in LF technology (report from Bonn, CPPM, IRFU, KIT collaboration)

A.Rozanov 5.04.2017

Collaboration

- University of Bonn I. Caicedo, T.Hirono, T.Hemperek, F.Hugging, H.Kruger, P.Rymaszevski, T.Wang, N.Wermes
- CPPM M.Barbero, P.Breugnon, S.Godiot, J.Liu, P.Pangaud, A.Rozanov
- KIT I. Peric
- IRFU CEA Y.Degerli, F.Guilloux, P.Schwemling, C. Guyot, J.-P. Meyer, A. Ouraou, M.Lachkar, M. Vandenbroucke

HL-LHC application

- After the Phase II upgrade ~2026
- The HL-LHC will operate at a ultimate leveled instantaneous luminosity of 7.5×10^{34} cm⁻²s⁻¹.
- Total pixel silicon area of ATLAS Inner Tracker (ITk) is ~8.2m².
- L1 trigger rate 1 MHz, minimal latency 6 us , pileup 200 events

Presently, the default option for upgrade is to use a hybrid pixel detector concept:

- Sensor: thin 100-150 um silicon planar or 3D
- Readout-Out Chip: deep-submicron rad-hard ICs (65nm), high granularity 50x50 um pitch

HV-HR CMOS for Phase-II Upgrade

- Commercial CMOS technology \rightarrow low price
- Thinned chips \rightarrow material budget reduced
- Pixel size reduced \rightarrow better resolution and two track separation
- Capacitively coupled CMOS chip →Option to glue (or bump bond) CMOS chip on standard digital chip (FE-I4 or FE-RD53)
- Use case for inner pixels: 25x25 um pixel size with inpixel encoding readout by FE-RD53
- Use case for outer layers: full monolithic chip, low price, fast and easy module production, pixel pitch not critical

HV/HR CMOS architectures

Sensor capacitively coupled (or bump bonded) to digital IC:

Monolithic (depleted CMOS pixel chips including the R/O architecture on-chip):

LFOUNDRY Technology and projects

LFoundry CMOS technology:

- 150nm CMOS (Avezzano, Italy)
- 2kΩcm p-type bulk
- Deep NWell available
- HV process
- Thinning and back size metallization possible, up to 7 metal layers, 8"
- MLM3 (multi-layer-mask) (25.840mm x 9.505mm)
- LFoundry Projects
- CCPD-LF VA chip : 5 x 5 mm² (Bonn, CPPM,KIT) submitted july 2015
- CCPD-LF VB chip : 5 x 5 mm² (Bonn, CPPM,KIT) submitted july 2015
- LFCPIX V1 chip : 10 x 10 mm² (Bonn, CPPM, IRFU) submitted Feb 2016
- LFCPIX V2 chip : 10 x 10 mm² (Bonn, CPPM, IRFU) submitted Feb 2016
- LF_MONOPIX_01 chip : 10 x 10 mm² (Bonn, CPPM, IRFU) submission Sept 2016

LFOUNDRY development line

CCPD_LF (PROTO)

- Subm. in Sep. 2014
- 33 x 125 μm² pixels
- Fast R/O coupled to FE-I4
- Standalone R/O for test
- (Almost) Fully characterized

LF-CPIX (DEMO)

- Subm. in Mar. 2016
- CPIX demonstrator in LF
- 50 x 250 µm² pixels
- 34 col of 168 pixels
- Fast R/O coupled to FE-I4 •
- Standalone R/O for test
- Many meas. available

LF-Monopix01 (monolithic)

- Subm. in Aug. 2016
 - "Demonstrator size"
- 50 x 250 μm² pixels
- 142x36 pixel matrix
 - Fast standalone R/O
 - Standalone R/O like LF-CPIX
 - Just started measurements

CCPD-LF 150 nm prototype in 2015

Version A sensor: Larger DNW, larger input capacitance, electronics isolated with HV.

Version B sensor: Smaller DNW, smaller input capacitance.

8

analog buffer are

implemented in vB.

CCPD_LF: neutron irradiation performance

Sensor leakage current

Non-ionizing fluence (NIEL) eTCT measurements

Spectra: ^{55}Fe and ^{241}Am after $10^{15}n_{eq}/\text{cm}^2$ (bias 100V/125 V)

CCPD-LF irradiated to 100 MRads protons

Leakage current reduced approximately by factor of 50, after annealing period.

Unusually, the Break Down voltage limit increases with the dose level.

Study of the different options of transistors

CCPD_LF : Gain and noise after irradiation

CCPD_LF

- Feed back transistor
 - Linear transistor (Norm)
 - Long linear transistor
 - ELT
- 2 pixels from each flavor
- Bias voltage: -100V
- Gain degradation: 60% 90%
- Noise increase: 50%

The degradation of "Long" is smallest (but its size is largest)

Difference between pixels in the same flavor is not small

CCPD_LF VA under protons: analog scan at -20 $\,\,^{\circ}\mathrm{C}$

Both the threshold and noise reduced after 100 MRad. The ELT pixels have bigger threshold level than linear feedback pixels.

J.Liu (CPPM)

CCPD_LF VA: tuning of LIN feedback pixels

LF CPIX demonstrator

Designed by SILAB (Aix+Marseille) SILAB

Y. Degerli, S. Godiot, T. Hemperek, H. Krueger, J. Liu, P. Pangaud, P. Rymaszewski, T.Wang

- New large demonstrator LF CPIX was submitted on March 2016:
 - Pixel size 250 μm × 50 μm (FE-I4 like).
 - Consists of three pixel flavors: passive, digital and analog pixel. Some improvements have been brought to them with respect to the characterizations of the LF CCPD prototypes.
 - New guard-ring strategy in LF CPIX Ver2 to increase the breakdown voltage and reduce the inactive region.

What we have done by using TCAD

Guard-ring strategy of LF CPIX V2

3 scenarios were under simulating. Top side bias with 300um thickness. Backside bias with 100um thickness. Topside bias: PW-pixel, bb and sr connected to –HV, DNW-pixel and NWring to VDDA, others floating. Backside bias: backplane connected to –HV, DNW-pixel and NWring to VDDA, others floating.

J.Liu (CPPM)

Depletion and e-field of LF CPIX V1 and V2

Big un-depleted area between depleted edge and cutting edge \rightarrow guard-ring reducing is possible \rightarrow reduced dead region.

Pwellring + 2 floating guard-rings + backbias + seal-ring. The depleted region can not reach the chip edge even with removed 5 outer guard-rings. Break down voltage changed from 90 to 170 V.

AC simulation for LF CPIX

AC simulation for V1 and V2

Leakage current of LF CPIX V1

LF CPIX V1 DNW-pixel and NWellring leakage current (flucnce=0)

Leakage current (LF_CPIX) –full matrix

I-V curve of LFCPIX

The breakdown voltage of LFCPIX version1 is about 130V. The breakdown voltage of LFCPIX version2 is about 220V. As expected

LF_CPIX : Gain and noise under radiation level

LF_CPIX

- Input transistor of CSA
 - NMOS
 - PMOS
 - CMOS
- Bias voltage: -100V
- Gain degradation: >95%
- Noise increase: ~30%
- No significant difference between the 3 flavors

Comparing CCPD-LF/LF-CPIX

- both have ٠
 - PMOS input transistor
 - Long FB transistor
- pixel size 3x larger for LF-CPIX ٠ => more relaxed cell layout
- Bias voltage: -100V ٠

Pixel size, small changes in MOS size, global DAC of the chip, wafer, process...

Hirono, Bonn

LF_CPIX : Threshold dispersion under radiation level

Un-tuned and tuned threshold dispersions of LF_CPIX (PMOS)

Increase of the initial dispersion is ~10%, and the threshold is still tunable after TID=50Mrad

T.Hirono (Bonn)

Specification of CMOS SENSOR for the ATLAS ITK upgrade

- A monolithic depleted CMOS sensor may be able to replace the diode sensor +FEIx of a hybrid module by incorporating this function in a single die CMOS monolithic chip. This replacement could offer several advantages, including finer pixel granularity, thinner charge collection layer for better 2- track separation, lower production cost and time, including savings by avoiding traditional bump bonding.
- Chip size = RD53 equivalent
- Pixel size < 50µm²
- Min. stable threshold setting <1000 e-
- Monolithic chip : digital bandwidth 160Mbps (number of bits transmitted per hit)
- Radiation level = 80 Mrad TID, and $1.5E^{15} n_{eq}/cm^2$ NIEL at 4000 fb⁻¹

LF-Monopix demonstrator

- 129x35 pixel array
- 40 MHz matrix readout FEI3like
- 9 flavours, each 4 col
- 160 Mhz LVDS serial output
- 8 bit LE/TE/ToT
- full custom digital: low noise and fit into pixel

PADs + Serializer +LVDS driver concernencem		
Sense Amplifiers + Gray Counters + EoC R/O Logic		
Decoupling capacitors	R/O logic	
Pixel with R/O logic 129 X 28 (7 designs)	Binary pixel 129 X 8 (2 designs)	
Chin Pipe Configuration & Manita		
PADs		

LF-Monopix: key design ingredients

- Pixel analog design a la LFCPIX
- Pixel with R/O logic => FE-I3 like pixel

- R/O logic fitted inside the LF-CPIX pixel
- Larger detector capacitance & More cross talk
 - => full-custom dig. circuit
 - => low noise circuit for critical dig. Blocks
 - => Very careful layout needed

250 µm

R/O logic

Similar

to LF-CPIX

HIT LE

TE

ReadInt ____

Token out

Freeze _ Read

ш

0

LF Monopix wafer received February

• Diced in March, wire bonded and tested at Bonn

Received 2017 Q1

LF-Monopix IV curve

HV breakdown at 280 V

LF_MONOPix - Readout - First results

https://github.com/SiLab-Bonn/monopix_daq

Conclusions

- Three generations of active CMOS sensors were designed and fabricated in LFoundry 150nm technology
- CCPD-LF fully characterized under X-ray, neutron and proton irradiations. At TID=50 MRad the increase of leakage current, gain decrease, noise increase and threshold tunability are acceptable
- LF-CPIX "Demonstrator" design and optimization with TCAD tools, better breakdown voltage, after TID=50 MRad better gain degradation (~10%), good threshold tunability
- LF-Monopix delivered and fully functional, to be characterized and irradiated

AIDA-2020 A.Rozanov 5.04.17 Paris

Backup material

LFOUNDRY: LF-CPIX demonstrator

- Feb. 2016: 10×10 mm² chip size
- V2 = V1 + new guard ring strategy.

Pixel Matrix :

- Pixel 250μm×50μm (FEI4-like)
- All pixels have bond pad to FEI4
- <u>3 sub-matrices</u> :
 - Passive: only DNwell sense diode
 - AnalogDigital: à la LF VA, 4 flavors (different diode bias, diff. input transistors NMOS and E PMOS).
 - Analog: preamp with complementary input CMOS, and 8 flavors (diode polarization, outputs "linear", "saturated" or "digital"...).

AIDA-2020 A

Preamp out / hitOR available for all pix!

LFOUNDRY: MONOPIX demonstrator

- Chip overview

- Large input from LF-CPIX: pixel, floor plan...
- 9 flavors for comparative studies => each 4 col.
 - Pixel with R/O logic (FE-I3 like pixel)
 - □ NMOS/CMOS pre-amp. □ Old/new discriminator
 - □ Different power domains for discriminator.
 - □ CS /CMOS token transmission
 - Binary pixel with R/O logic at column end NMOS /PMOS source follower for "HIT" R/O
- Many design efforts to meet the challenges in terms of noise and timing
 faster pre-amp. & discriminator
 careful layout and post layout sim.
 - □ full-custom in-pixel digital circuit & low noise digital block

Receive

2017 O

Sense Amplifiers + Gray Counters + EoC B/O Logic		
Decoupling capacitors	R/O logic	
Pixel with R/O logic	Binary pixel	
129 X 28	129 X 8	
(7 designs)	(2 designs)	
Chip Bias, Configuration & Monitoring		
PADs		

DADe | Contaliner (1)/DC driver