Status of WP6 activities in Liverpool

E. Vilella, on behalf of the Liverpool group
Department of Physics,
University of Liverpool,
Oliver Lodge,
Liverpool L69 7ZE
UK
vilella@hep.ph.liv.ac.uk

Outline

1. HV-CMOS chips
2. Test structures in HV-CMOS chips
3. H35DEMO
4. RD50 HV-CMOS submission
5. Accura100 flip-chip bonder and test kit
6. Summary

$\leftarrow 5 \mathrm{~mm} \rightarrow$

Features:

- LFoundry 150 nm HV-CMOS
- Contributions from IFAE, Uni. Geneva and Uni. Liverpool
- Different matrices (2 monolithic) and test structures
- Resistivities: $500 \Omega \cdot \mathrm{~cm}$ and $1.9 \mathrm{k} \Omega \cdot \mathrm{cm}$
- Submitted in November 2016 (MPW)
- ASICs will be delivered in April 2017

Features:

- LFoundry 150 nm HV-CMOS
- Contributions from BNL, IFAE, KIT, Uni. Bern, Uni. Geneva, Uni. Heidelberg and Uni. Liverpool - Different matrices (1 CCPD and 5 monolithic) and test structures
- Resistivities: $100 \Omega \cdot \mathrm{~cm}, 500-1.3 \mathrm{k} \Omega \cdot \mathrm{cm}, 2 \mathrm{k}-2.5 \mathrm{k} \Omega \cdot \mathrm{cm}$ and $3.6 \mathrm{k}-3.9 \mathrm{k} \Omega \cdot \mathrm{cm}$
- Submitted in August 2016 (MPW)
- Delivered in March 2017 $200 \Omega \cdot \mathrm{~cm}$ and $1 \mathrm{k} \Omega \cdot \mathrm{cm}$

Features:

- ams 180 nm HV-CMOS (H18)
- Contributions from CERN, KIT, Uni. Geneva, Uni. Heidelberg and Uni. Liverpool
- Different matrices (1 CCPD and 3 monolithic, it includes MuPix8), CLICpix and test structures
- Submitted in January 2017
(eng. run)
- ASICs will be delivered in ~April 2017

[^0]
LFoundry HV-MAPS chip

Areas from top to bottom (see R. Casanova's talk):

1) Test structures

- TCT/e-TCT
- sensor capacitance measurement
- very fast measurements

2) Non-ATLAS matrix

3) Matrix of HV-MAPS pixels with FEI3-like readout

- 40 rows $\times 78$ columns of pixels
- pixel area is $50 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$
- analog and digital readout electronics are embedded inside the pixel area
- analog readout electronics \rightarrow preamplifier, shaper and discriminator
- digital readout electronics \rightarrow electronics to process the output of the discriminator, 28 -bit DRAM memories to store the TS and 18 -bit DROM memory to store the pixel address
- This matrix was designed to study very small pixels with all the readout electronics integrated inside the pixel area and to qualify this technology for the HL-LHC upgrade
- No backside biasing option
- Detector thickness is $280 \mu \mathrm{~m}$

LF2 - Pixel cross-section

- The sensing diode is a p-substrate/DNWELL junction
- The DNWELL can be isolated from NWELLs/PWELLs thanks to the PSUB layer
- Therefore, it is possible to have fully CMOS electronics inside the pixel area
- In our case, we have multiple NWELLs and PWELLs:
- 1 NWELL/PWELL for the CSA and the shaper
- 1 NWELL/PWELL for the CMOS discriminator
- 1 NWELL/PWELL for the digital readout
- 1 NWELL for the pMOS transistors of the sensor bias circuit (this NWELL is connected to the DNWELL)
- The DNWELL is biased through an $\mathrm{n}^{+} /$NWELL/NISO structure

LF2 - Test structures

LF1 and ams 180 nm - Test structures

A) TCT/e-TCT $\rightarrow 3 \times 3$ matrix of $50 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$ HV-CMOS pixels without readout electronics
B) $\mathrm{TCT} / \mathrm{e}-\mathrm{TCT} \rightarrow 3 \times 3$ matrix of $75 \mu \mathrm{~m} \times 75 \mu \mathrm{~m}$ HV-CMOS pixels without readout electronics
C) Fast measurements $\rightarrow 3 \times 3$ matrix of $50 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$ HV-CMOS pixels
D) Sensor capacitance measurement

1 single pixel with $50 \mu \mathrm{~m} \times 50 \mu \mathrm{~m}$ 1 single pixel with $75 \mu \mathrm{~m} \times 75 \mu \mathrm{~m}$
E) 2 avalanche photodiodes for I-V measurements
A) TCT/e-TCT $\rightarrow 3 \times 3$ matrix of $33 \mu \mathrm{~m} \times 125 \mu \mathrm{~m}$ HVCMOS pixels without readout electronics
B) Sensor capacitance measurement $\rightarrow 1$ single pixel with $33 \mu \mathrm{~m} \times 125 \mu \mathrm{~m}$ (simple pixel)
C) Sensor capacitance measurement $\rightarrow 1$ single pixel with $33 \mu \mathrm{~m} \times 125 \mu \mathrm{~m}$ (pixel with TW compensation)
D) Fast measurements $\rightarrow 3 \times 3$ matrix of $33 \mu \mathrm{~m} \times 125$ $\mu \mathrm{m}$ HV-CMOS pixels

7/15

H35DEMO - Design aspects reminder

Main features:

- ams $0.35 \mu \mathrm{~m}$ HV-CMOS (H35)
- submission through an engineering run
- submission in October 2015
- wafer production finished in December 2015
- different substrate resistivities to improve SNR
$-20 \Omega \cdot \mathrm{~cm}$ (standard), $80 \Omega \cdot \mathrm{~cm}, 200 \Omega \cdot \mathrm{~cm}, 1 \mathrm{k} \Omega \cdot \mathrm{cm}$

Areas (from top to bottom):

- standalone nMOS matrix
- digital pixels with in-pixel nMOS comparator
- standalone readout
- analog matrix (2 identical arrays)
- different flavours
- standalone CMOS matrix
- analog pixels with off-pixel CMOS comparator
- standalone readout
- All pixels are $50 \mu \mathrm{~m} \times 250 \mu \mathrm{~m}$ for compatibility with FEI4

H35DEMO - Measurements with Sr90

CSA output when the ASIC is irradiated with a Sr90 source (standalone nMOS matrix)

Amplitude $=342 \mathrm{mV}$
Rise time $=105 \mathrm{~ns}$
Fall time $=1.35 \mu \mathrm{~s}$

H35DEMO - e-TCT measurements

e-TCT set-up:

Measured results:

[^1]
H35DEMO - e-TCT measurements

- Samples of the H35DEMO in the $1 \mathrm{k} \Omega \cdot \mathrm{cm}$ resistivity were backside processed:
- thinning to $100 \mu \mathrm{~m}$
- backside p^{+}implantation with boron
- thermal annealing
- backside metallization
to allow backside biasing and achieve a stronger, more uniform electric field in the sensing volume

H35DEMO - e-TCT measurements

e-TCT set-up:

UNIVERSITY OF
 LIVERPOOL

$$
\rho=1 \mathrm{k} \Omega \cdot \mathrm{~cm}, \mathrm{~d} \sim 100 \mu \mathrm{~m} @-40 \mathrm{~V}
$$

HV-CMOS submission within RD50 collaboration

\square	10 pads	10 pads	10 pads	10 pads	Matrix 5 Type A (cross-reticleboundary readout, prestitching)			
年		Matrix 2 with a time-todigital converter circuit to sample the sensor time	Matrix 3 with super-fast pixel, ideally within 1-2 BXs	Matrix 4 imaging matrix with different sensor crosssections				
Test 1								
n n n $\underline{2}$							n n 2 0 0	IFAE R. Casanova Uni. Barcelona
Test 2	with an analog timing circuit to sample 3-5				Matrix 5 Type B		Test 5	O. Alonso Uni. Liverpool S. Powell
n 0 0 0 0	points of the sensor rising time and extrapolate t_{0}				(cross-reticleboundary readout,	$\begin{aligned} & \frac{n}{0} \\ & \frac{\pi}{2} \\ & \underline{0} \end{aligned}$	n $\frac{0}{2}$ 0 0	S. Powell E. Vilella C. Zhang
Test 3					prestitching)		Test 6	Scope for further design
	10 pads	10 pads	10 pads	10 pads				contributions...

Test structure 1 Simple CMOS capacitors to study oxide thickness
Test structure 210×10 matrix of very small pixels with passive readout
Test structure 310×10 matrix of very small pixels with $3 T$-like readout
Test structure 4 Small matrix of pixels for TCT, e-TCT and TPA-TCT measurements
Test structure 5 Single pixels for sensor capacitance measurements
Test structure 6

Accura100 flip-chip bonder and test kit

Accura100 flip-chip bonder

Metal-on-Glass process 6 -inch wafer submitted to Micron Semiconductor Ltd (March 2017)

20x test structures (RD53 chip size) for 10 trials of flip chip bonding

$10 x$ test structures (FE-I4 chip size) for 5 trials of flip chip bonding characterise their coupling by accurate capacitance measurements.

LIVERPOOL

Summary

- \quad Several HV-CMOS submissions in 2016:
- $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ HV-MAPS ASIC in LFoundry 150 nm via MPW
- $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ HV-MAPS ASIC in LFoundry 150 nm via MPW
- $\quad 21.3 \mathrm{~mm} \times 22.6 \mathrm{~mm}$ HV-MAPS ASIC in ams 180 nm via engineering run
- The fabricated ASICs are expected during the first quarter of 2017
- PCBs to design
- Firmware to write
- Many many measurements to be done
- H35DEMO measurements are on-going
- Working towards a new HV-MAPS submission within the RD50 collaboration
- New Accura100 flip-chip bonder and test kit

Thank you for your attention!

[^0]: 3/15 Fva Vilella - AIDA-2020 2nd Annual Meeting - Paris, 4-7 April 2017

[^1]: 10/15 Sva Vilella - AIDA-2020 2nd Annual Meeting - Paris, 4-7 April 2017

