Status of WP6 activities in Liverpool

E. Vilella, on behalf of the Liverpool group

Department of Physics, University of Liverpool, Oliver Lodge, Liverpool L69 7ZE UK

vilella@hep.ph.liv.ac.uk

Outline

- 1. HV-CMOS chips
- 2. Test structures in HV-CMOS chips
- 3. H35DEMO
- 4. RD50 HV-CMOS submission
- 5. Accµra100 flip-chip bonder and test kit
- 6. Summary

HV-CMOS chips

LFoundry HV-MAPS chip

Areas from top to bottom (see R. Casanova's talk):

1) Test structures

- TCT/e-TCT
- sensor capacitance measurement
- very fast measurements
- 2) Non-ATLAS matrix

3) Matrix of HV-MAPS pixels with FEI3-like readout

- 40 rows x 78 columns of pixels
- pixel area is 50 μm x 50 μm
- <u>analog and digital readout electronic</u>s are <u>embedded inside the pixel area</u>
- analog readout electronics → preamplifier, shaper and discriminator
- digital readout electronics \rightarrow electronics to process the output of the discriminator,
 - 2 8-bit DRAM memories to store the TS and
 - 1 8-bit DROM memory to store the pixel address
- This matrix was designed to study very small pixels with all the readout electronics integrated inside the pixel area and to qualify this technology for the HL-LHC upgrade
- No backside biasing option
- Detector thickness is 280 μm

LF2 - Pixel cross-section

- The sensing diode is a p-substrate/DNWELL junction
- The DNWELL can be isolated from NWELLs/PWELLs thanks to the PSUB layer
- Therefore, it is possible to have fully CMOS electronics inside the pixel area
- In our case, we have multiple NWELLs and PWELLs:
 - 1 NWELL/PWELL for the CSA and the shaper
 - 1 NWELL/PWELL for the CMOS discriminator
 - 1 NWELL/PWELL for the digital readout
 - 1 NWELL for the pMOS transistors of the sensor bias circuit (this NWELL is connected to the DNWELL)
- The DNWELL is biased through an n⁺/NWELL/NISO structure

LF2 - Test structures

LIVERSITY OF

LF1 and ams 180 nm - Test structures

- **TCT/e-TCT** \rightarrow 3 x 3 matrix of 50 µm x 50 µm HV-CMOS pixels without readout electronics
- **TCT/e-TCT** \rightarrow 3 x 3 matrix of 75 µm x 75 µm HV-CMOS pixels without readout electronics
- Fast measurements → 3 x 3 matrix of 50 μm x 50 μm HV-CMOS pixels

Sensor capacitance measurement

1 single pixel with 50 μm x 50 μm

- 1 single pixel with 75 μ m x 75 μ m
- 2 avalanche photodiodes for I-V measurements
- A) TCT/e-TCT \rightarrow 3 x 3 matrix of 33 µm x 125 µm HV-CMOS pixels without readout electronics
- **B)** Sensor capacitance measurement \rightarrow 1 single pixel with 33 µm x 125 µm (simple pixel)
- **C)** Sensor capacitance measurement \rightarrow 1 single pixel with 33 µm x 125 µm (pixel with TW compensation)
- D) Fast measurements \rightarrow 3 x 3 matrix of 33 µm x 125 µm HV-CMOS pixels

22.60 mm

H35DEMO - Design aspects reminder

Main features:

- ams 0.35 μm HV-CMOS (H35)
- submission through an engineering run
 - submission in October 2015
 - wafer production finished in December 2015
- different substrate resistivities to improve SNR
 - 20 Ω ·cm (standard), 80 Ω ·cm, 200 Ω ·cm, 1k Ω ·cm

Areas (from top to bottom):

- standalone nMOS matrix
 - digital pixels with in-pixel nMOS comparator
 - standalone readout
- analog matrix (2 identical arrays)
 - different flavours
- standalone CMOS matrix
 - analog pixels with off-pixel CMOS comparator
 - standalone readout
- All pixels are 50 μm x 250 μm for compatibility with FEI4

H35DEMO - Measurements with Sr90

Allocated space in clean room **Firmware** Custom made PCB designed at UoL H35DEMO

Amplitude = 342 mV Rise time = 105 ns Fall time = 1.35 μs

UNIVERSITY OF LIVERPOOL

H35DEMO - e-TCT measurements

e-TCT set-up:

Measured results:

H35DEMO - e-TCT measurements

- Samples of the H35DEMO in the 1k Ω·cm resistivity were backside processed:
 - thinning to 100 μm
 - backside p^+ implantation with boron
 - thermal annealing
 - backside metallization

to allow backside biasing and achieve a stronger, more uniform electric field in the sensing volume

H35DEMO - e-TCT measurements

HV filter

Curren

UNIVERSITY

FRPO

Laser diode

0 F

HV-CMOS submission within RD50 collaboration

ads	IO pads	IO pads	IO pads	IO pads	Matrix 5		ads	
ō					Type A		ō	RD50
Test 1	Matrix 1 with an analog timing circuit to sample 3-5 points of the sensor rising time and extrapolate t ₀	Matrix 2 with a time-to- digital converter circuit to sample the sensor time	Matrix 3 with super-fast pixel, ideally within 1-2 BXs	Matrix 4 imaging matrix with different sensor cross- sections	(cross- reticle- boundary readout, pre- stitching)	IO pads	Test 4	Design effort:
IO pads							IO pads	IFAE R. Casanova Uni, Barcelona
Test 2					Matrix 5 Type B (cross- reticle- boundary readout	IO pads	Test 5	O. Alonso Uni. Liverpool
IO pads							IO pads	E. Vilella C. Zhang
Test 3	IO pads	IO pads	IO pads	IO pads	pre- stitching)		Test 6	Scope for further desigr contributions

Test structure 1	Simple CMOS capacitors to study oxide thickness
Test structure 2	10 x 10 matrix of very small pixels with passive readout
Test structure 3	10 x 10 matrix of very small pixels with 3T-like readout
Test structure 4	Small matrix of pixels for TCT, e-TCT and TPA-TCT measurements
Test structure 5	Single pixels for sensor capacitance measurements
Test structure 6	

Accµra100 flip-chip bonder and test kit

HETHL D TOP

 $Acc\mu ra100$ flip-chip bonder

Metal-on-Glass process 6-inch wafer submitted to Micron Semiconductor Ltd (March 2017) 20x test structures (RD53 chip size) for 10 trials of flip chip bonding

10x test structures (FE-I4 chip size) for 5 trials of flip chip bonding

- The original plan is to align and glue 2 parts together and to characterise their coupling by accurate capacitance measurements.

Summary

- <u>Several HV-CMOS submissions in 2016</u>:

- 10 mm x 10 mm HV-MAPS ASIC in LFoundry 150 nm via MPW
- 5 mm x 5 mm HV-MAPS ASIC in LFoundry 150 nm via MPW
- 21.3 mm x 22.6 mm HV-MAPS ASIC in ams 180 nm via engineering run
- The fabricated ASICs are expected during <u>the first</u> <u>quarter of 2017</u>
 - PCBs to design
 - Firmware to write
 - Many many measurements to be done
- H35DEMO measurements are on-going
- Working towards a <u>new HV-MAPS submission</u> within the RD50 collaboration
- New <u>Accµra100 flip-chip bonder</u> and test kit

Thank you for your attention !

