Santander's Activities Update on 3D and LGAD sensors

AIDA-2020 Second Annual Meeting Paris, April 2017

Iván Vila Instituto de Física de Cantabria (CSIC-UC)

The Team

E. Currás, M. Fernández, A. García, G. Gómez, J. González, R. Jaramillo, D. Moya,

R. Palomo⁽¹⁾, I. Vila.

Instituto de Física de Cantabria(CSIC-UC)

⁽¹⁾ Universidad de Sevilla

M. Moll.

CERN

M. Carulla, D. Flores, S. Hidalgo, A. Merlos, G. Pellegrini, D. Quirion.

IMB-CNM (CSIC)

O. Alonso, A. Diéguez

Universitat de Barcelona (UB)

Developed inside the RD50 collaboration & AIDA -2020 WP7 on Advanced Hybrid Detectors.

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

UNIVERSITAT DE

BARCELONA

Outline

- Overview on activities on LGADs
 TCT characterization comparison vs TCAD
 - _ Test beam at SPS(August 2016).
- Overview on activities on 3D sensors.
 - _ Test beam at SPS(August 2016)
- Summary

LGAD

Prototype description (CNM run #8533)

- P-in-P LGAD with segmented cathode (ohmic contact, "readout of holes")
- DC strips, 160um pitch, 1.8E13/cm² imp. dose
 (W1-K05 & W1-K03 STR.45.160.8000.06.12)

Laser Characterization: TCT

- Transient Current Distinct signature of signal amplification.
- Comparison of measured transient vs. TCAD simulations. To 1GHz DSO

Ring

iLGAD

MIP Response Emulation: Infrared laser vs TCAD Simulation

Infrared laser Transient Current (MIP emulation)

25 Time [ns]

20

45

ILGAD - TCAD simulation - Vbias = 300v TCAD (300 V)

MIP Response: Test Beam testing.

First ever multi-channel tracking hybrid module Based on I-LGAD & Strip LGAD ! Beetle ROC Fan in DC Fan in AC Strip LGAD I-LGAD (8533W1K05T, 45 strips 160 mm, non-irradiated)

Test beam: AIDA-2020 WP7 Setup AKA as Atlas ITK setup 😳

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

Test beam: Gain determination

- Gain = Charge Most Probable Value I-LGAD/ MPV Reference PIN
- Reference sensor and I-LGAD same thickness
- Dependence of the beetle gain (electrons/ADU) corrected (see G. Gomez talk on 3D sensors)

I-LGAD (Room temp. 400 Volts)

Standard Strip (Room temp. 200 Volts)

Test beam: Charge vs V_{bias}

IF (A

Test beam: Noise vs. V_{bias}

Noise (electrons)

Vbias

Test beam: readout front-end saturation.

3D pixel sensors

CNM Double sided 3D process: cross section

3D pixel strips: layout

25x100 (1E) μm²

50x50 (1E) μm²

1	5 <u>4</u> 8\	0		0	X <u>+</u> X	0		0
	<u>(0))</u>		((<u>0</u>))				((0)):	
	\mathbb{X}	0	\times	0	\times	0	\times	0
	·······		·(·[0]·)·]·······		·(·[0]·)·]·······			
	\mathbb{X}	0	\times	0	\times	0	\times	0
							(([<u>o</u>]))	
	\varkappa		\times	<u>ο</u>	\times	<u>0</u>	\times	<u>0</u>
(1	(())		((<u>(</u>)))		(O)):		((@)):	
	X	0	X	o	X	o	X	o
			(()))		(()))		(()))	
	\mathbb{X}	0	X	0	X	0	X	0
		:::-[·(@))]		(()))		((0))	
	\mathbb{X}	0	\times	0	\times	0	\mathbb{X}	0
							(())	
	\mathbb{X}	.o.	\mathbb{X}	0	\mathbb{X}	. <u>0</u>	\mathbb{X}	<u>0</u>
1	(i))		(0))		(0))		((i)) :	
	X	° `	X	0	X	o	X	o
		((()))			
	\mathbb{X}	0	\mathbb{X}	0	\mathbb{X}	0	X	0
			(O))		(0))		((0))	
	\mathbb{X}	0	\mathbb{X}	0	\mathbb{X}	0	\mathbb{X}	0
	(O))	((())		(0))		((@))	
	\mathbb{X}	.0	\times	0	\times	<u>0</u>	\times	<u>0</u>
	(@)) —	((@)) —		(@))		((@))	
ί	State of the second s	·	 \ , /	· · ·	N, ≻, ∕ , ∕	· · · · · · · · · · · · · · · · · · ·	· ∧, ≻+< /	· · · ·

DUT:3D strips

Metal routing to fit 80 μ m pitch electronics (Alibava Systems). Connected through fan AC.

Alibava daughter board with 2 beetle (strip) ROCs

Irradiation

- CERN PS: 24 GeV protons
- Devices
 - _ 25x100 "pixel strips" 9.43e15 ± 7% p/cm2 = 5.7e15 neq/cm2
 - _ 50x50 "pixel strips" 9.43e15 ± 7% p/cm2 = 5.7e15 neq/cm2
 - _ 25x100 "pixel strips" 1.72e16 ± 7% p/cm2 = 1.0e16 neq/cm2
 - _ 50x50 "pixel strips" 1.72e16 ± 7% p/cm2 = 1.0e16 neq/cm2
- NO annealing (yet)
- 1e16 devices were NOT in time for test beam

Data Analysis summary

Calibrate ALIBAVA beetle chips.

Charge injection circuit non-linear at small charges: exclude from linear fit. Strong temperature dependence: repeated all calibrations in climatic chamber. Calibrations and data are matched both in temperature and in bias voltage. Although calibrations are insensitive to bias V: inter-strip capacitance dominates.

Calib_AveTrunked_b2_ch6 540 520 550 electrons per ADC = 316 electrons per ADC = 38 500 450 400 400 380 350 360 +22 °C -20°C **Beetle 2 Calibration Beetle 2 Calibration** lectrons per ADC coun electrons per ADC col 450 400 40 350 300 300 250, 250, Channel Channel

Calib_AveTrunked_b2_ch6

Unirradiated sensor, 3D 50x50x230 μm³, 22°C, -25V, π/p beam

Unirradiated sensor, 3D 25x100x230 μm³, -25°C, -30V, π/p beam

 Φ = 5.7e15 n_{eq}/cm², 3D 25x100x230 μ m³, -25°C, -150V and -180V, π /p beam

Collected charge summary

Sensor Geometry	Operating Conditions	Fluence (protons) (n _{eq} /cm²)	Charge (electrons x 10 ³)	CCE* (%)
3D 50 x 50 x 230 μm ³	-25 V, 22 °C	0	17	100
3D 25 x 100 x 230 μ m ³	-30 V, -25 °C	0	17	100
3D 25 x 100 x 230 μ m ³	-150 V, -25 °C	5.7x10 ¹⁵	14	82
3D 25 x 100 x 230 μ m ³	-180 V, -25 °C	5.7x10 ¹⁵	16	94

* CCE with respect to non-irradiated sensor Hint of charge multiplication for irradiated sensor at high V Typical Q ~ 76 $e^{-}/\mu m$ ~17480 e^{-} for 230 μm thickness

Summary

– I-LGAD

- First characterization of a module with at SPS (AIDA-2020) with Alibava readout
- Overall performance matches TCAD simulations and expectation.
- Promising technology for achieving an ultra-low material budget tracking + built-in timing.

- 3D

- _ Studied small-pitch 3D pixel strips from CNM
- _ Proton irradiation at CERN PS. Three sensors tested
- _ Fresh and irrdiated samples CCE as expected.
- _ CCE after Φ of 5.7e15 n_{eq}/cm² 82% @ 150 V, 94% @ 180 V

THANK YOU!

Special thanks to Florentina Manolescu (bonding lab @ CERN), Federico Ravotti (irrad facility@CERN) and Sofia Otero (SSD@CERN)

Motivation:

- Integrated signal amplification increases the Signalto-Noise ratio increasing the tracking resolution:
 - Thinner detectors (reduction of the multiple scattering)
 Improved intrinsic hit resolution.
- The higher the SNR the higher timing resolution

Transient Current: Red laser TCT.

Test beam: Set-up

LGAD matrix characterization

- LGAD back illuminated
- Ring included (Pixel6)
- Pulsed laser
- LGAD biased @ 420V
- 100 um pinhole
- Vrms noise 0.73 mV

Fron-end electronics: s-LGAD integration

Strip LGAD (three strips bonded)

Outlook

- I-LGAD prototypes (very limited sample tested) performing as designed.
 - 0
 - Using 4 inch Wafers 0
 - Lower Pitch Size. 50 µm 0
 - Thin Devices (< 200 µm) 0
 - SOI, SOS Wafers
 - **Timing** Applications
 - **Radiation Hardness** 0
 - (See Talk from Gallium Implantation
 - Mar Carulla) **Carbon** Doping

- **Double Side** Technological Process O **Higher** Active Area. **6** inch Wafers
 - AC Design
 - **Polysilicon** Layer
 - 1-2 Additional Mask Levels

(from Salvador Hidalgo)

Electrical Characterization

60

Reverse Bias

34V

20

30V

Dedicated front-end electronics: preamp+shaper

Optimized to maintain ENC below 700 e- with a C_d of 20 pF

CSA with two gains (100fC, 500fC)

Two gain ranges: 100fC and 500fC

