

Advanced European Infrastructures for Detectors at Accelerators

Structural characterization of silicon channels for fluidic applications

Richard Meunier

Diego Alvarez Feito, Clémentine Lipp, Alessandro Mapelli, Jerome Noel

EP-DT Detector Technologies

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168.

Introduction

- Thermal management of detectors electronics
 - Cooling large surface detectors
 - Keeping the detectors cool at all time

Problems and constraints

- Confined space with very limited access
- Different types of liquid coolants
- Using material with low particle interaction

Envisioned solution

- Silicon micro-channels
- Ideally integrated in a monolithic detector

NA62-GTK – SILICON MICROCHANNEL COOLING

• NA62 is the first experiment to use silicon microcooling plates for the thermal management of their GTK pixel detectors (since 2014).

- 3 detector modules
- Liquid C₆F₁₄
- T_{op} below -10°C
- Power dissipation 25W-48W over 6x4cm²

A. Mapelli *et al.* 2012 JINST 7 C01111
P. Petagna *et al.*, Microelec. Journal 44 (2013) 612–618
G. Romagnoli *et al.*, Microelec. Eng. 145 (2015) 133-137

Silicon Microchannel Cooling

- Why Silicon or SiC?
 - Detectors are in silicon
 - Controlled interaction with particles
 - Availability
 - Extensive processing knowledge and technologic applications (Micro-electronics, MEMS, etc)
- Interest and goals:
 - Size advantage
 - Design advantage: large pattern possibility
 - Can be integrated in the detector's fabrication process combining versatility of standard micro-fabrication processes with high thermal efficiency of micro-fluidics
- Mechanical problematics:
 - Young's modulus of 169 GPa <110> or 130 GPa <100> or 187 GPa <111> or...?
 - Possible fatigue in monocrystalline silicon can accumulate and lead to rupture
 - Lots of publications and tests on silicon mechanical properties, but so far no link between them...

Micro-Channel Fabrication

- Two different approaches:
 - Wafer bonding
 - Buried micro-channels
- Wafer bonding
 - Etching step
 - Wafer bonding
 - Problem: wafer bonding can be tricky

WAFER BONDING APPROACH

Low material budget microfabricated cooling devices for particle detectors and front-end electronics A. Mapelli^{ab}^{*}, A. Catinaccio^a, J. Daguin^a, H. van Lintel^b, G.Nuessle^c, P. Petagna^a, P. Renaud^b, ^aPhysics Department, CERN, Geneva, Switzerland ^bLaboratoire de Microsystèmes, Ecole Polytechnique Fédérale de Lausanne, Switzerland ^cCP3, Université catholique de Louvain, Louvain-la-Neuve, Belgique

Nuclear Physics B (Proc. Suppl.) 215 (2011) 349-352

FBK-CERN Embedded Channels

- Buried channels
 - Trench through Bosch Process etching
 - Channel engraving with SF6 isotropic etching
 - Channel filling with PE/LPCVD poly-silicon

BURIED CHANNELS APPROACH

Silicon buried channels for pixel detector cooling

M. Boscardin^{a,*}, P. Conci^a, M. Crivellari^a, S. Ronchin^a, S. Bettarini^{b,c}, F. Bosi^c

⁴ Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento, Italy ^b Universitá di Pisa, Lgo B. Pontecorvo 3, I-56127 Pisa, Italy ^c Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, Lgo B. Pontecorvo 3, I-56127 Pisa, Italy

Nuclear Instruments and Methods in Physics Research A 718 (2013) 297-298

trenches - anisotrpic etch

channels - isotropic etch

trench filling

Fig. 1. Process sections for longitudinal and transverse channels.

Characterization

- Objective at CERN: defining a standard procedure to validate and ensure reliability of the cooling systems → Leak test and pressure tests
- Reasons to perform pressure tests:
 - Gaining a better understanding of the mechanical response of ScSi
 - Assess effect of channel geometry to optimize design of new devices
 - Evaluate wafer-to-wafer bond strength
 - Serve as quality control procedure

NA62 GTk

ALICE ITS

Leak Test

Positioning

Pumping and leak recording

Objective:

Testing if samples are leak tight

Pressure Test: Setup

Safety Chamber

Sample Holder

Sample Positioning

Pressure Test & Acquisition

Failure

Results

- Si-Si wafer bonding:
 - Good implementation
 - Pressure resistance depends on boding quality and channel geometry
- Single-channel samples
 - Etched together with real cooling devices for quality control of bond strength

Observed with Si-Si bonded channels

Broken backside of the silicon channel Fluidic inlet 10mm

> Example of Si-Si bonded channel failure: Break visible to the naked eye

керешиые

Failure in Silicon Cover

Experimental Results: Typical Failure Models

- Interfacial Failure
 - Clean surfaces observed after testing suggest poor wafer bonding

Experimental Results: Typical Failure Models

• Silicon Failure

• Good bonding often results in the explosion of the channel cover

Results

- Buried micro-channels:
 - Challenging process
 - Very good leakage and pressure resistance
- Two types of channels:
 - Longitudinal channels
 - Transversal channels

Pressure test @250-300 bars

Pressure Samples Longitudinal

04 April 2017

AIDA 2020 – Paris FRANCE

Failure in a Longitudinal Sample @ 236 bar

Pressure Samples Transversal

Failure in a Transversal Sample @ 300 bar

Transversal/Single/W=50, exploded at 335 bar

Monolithic Integration

 If not CMOS compatible
 separate channel processing, with direct wafer bonding at the end

Monolithic sensor with embedded microchannels

Ultimate objective: monolithic bloc for the detector requiring minimum intervention once installed

Full integration

Integrated, autonomous solutions for thermal management in high energy physics and space applications

D. Alvarez Feito¹, M. Boscardin², A. Mapelli¹, P. Petagna¹

¹CERN EP-DT, Experimental Physics Department, Detector Technologies Group, Geneva, Switzerland

²FBK, Fondazione Bruno Kessler, Trento, Italy

Conclusion & Outlook

SCOPE OF AIDA-2020 TO GATHER THIS KNOWLEDGE AND BRING BUILDING BLOCKS TOGETHER

- Thermal management represents a major challenge in HEP.
- Continuous advances in micro-engineering have opened the door to the development of smaller and more efficient cooling devices capable of handling increasing power densities with a minimum mass penalty.
- AIDA-2020 is bringing together a community to develop and study silicon microchannel cooling devices and low mass mechanical structures .
- By 2019, a catalog of building blocks, design guidelines and standards for characterization and qualification of devices and systems for microchannel cooling (single phase and evaporative) will be available.
- Long term objective:
 - Fully understanding failure parameters and how to avoid failure
 - Full-proof characterization and reliability protocol

Thank you for your attention!